
Geometric Deep Learning:

A New Paradigm of Machine Learning

Amir P. Shanehsazzadeh

Advisor: Prof. Boaz Barak (Department of Computer Science)
Shadow Advisor: Prof. Clifford H. Taubes

Submitted in partial fulfillment of the honors requirements
for the degree of Bachelor of Arts in Mathematics

Department of Mathematics
Harvard University
March 21, 2022

Table of contents

Abstract . iii

Acknowledgements . iv

1 Introduction .. 1
1.1 Fundamentals of Machine Learning . 3

1.1.1 Supervised Learning . 3
1.1.1.1 Predicting Protein Stability . 4

1.1.2 Unsupervised Learning . 4
1.1.2.1 Clustering. 5
1.1.2.2 Language Modeling . 6

1.1.3 Reinforcement Learning . 6
1.1.4 Classical Machine Learning . 7

1.1.4.1 Linear Regression . 7
1.1.5 Deep Learning and Neural Networks . 8

1.1.5.1 Feedforward Neural Networks . 12
1.1.5.2 Recurrent Neural Networks. 12
1.1.5.3 Convolutional Neural Networks . 13
1.1.5.4 Transformers . 14
1.1.5.5 Graph Neural Networks . 16

1.2 Motivation for Geometric Deep Learning . 16
1.3 This Thesis . 17

2 The Geometric Deep Learning Blueprint . 18
2.1 Symmetry: A Mathematical Perspective . 18
2.2 Domain Structure and Stability . 21

2.2.1 More Granular Structure. 22
2.2.2 Stability and Local Symmetries . 23

2.2.2.1 Function Stability . 24
2.2.2.2 Domain Stability . 24
2.2.2.3 Coarsening via Scale Separation . 25

2.3 The Blueprint . 26

i

3 Geometric Domains: 5 Gs and an M ... 29
3.1 Graphs . 29
3.2 Grids . 31
3.3 Groups . 33
3.4 Geodesics . 35

3.4.1 Manifold Basics . 36
3.4.2 Geodesics on Manifolds . 37
3.4.3 Isometries and Symmetries . 39
3.4.4 Fourier Analysis on Manifolds . 40
3.4.5 Convolution on Manifolds . 41

3.4.5.1 Spectral Convolution. 41
3.4.5.2 Spatial Convolution . 42

3.5 Gauges . 43
3.5.1 Tangent Bundles . 43
3.5.2 Gauge Symmetry . 44

3.6 Meshes . 45
3.6.1 Laplacian Matrices . 46
3.6.2 Spectral Convolution on Meshes. 48
3.6.3 Functional Maps . 48

4 Geometric Deep Learning Models . 50
4.1 Convolutional Neural Networks . 50

4.1.1 Group-Equivariance . 52
4.1.2 Meshes. 54

4.2 Graph Neural Networks . 56
4.2.1 Transformers (and more). 58
4.2.2 Equivariant Message-Passing . 58

4.3 Recurrent Neural Networks . 59
4.3.1 Long Short-Term Memory . 62

5 Applications. 65
5.1 Machine Learning . 65
5.2 Biochemistry: Molecules and Proteins . 66

5.2.1 AlphaFold . 66
5.3 Healthcare . 68
5.4 Networks . 68
5.5 The Metaverse: Virtual and Augmented Reality . 69

Bibliography.. 70

Appendix . 80

ii

Abstract

Geometric deep learning (GDL) uses the mathematical concepts of geometry to extend the
powerful methods of deep learning to model data with complicated underlying manifolds
such as molecules, proteins, social networks, and 3-dimensional images. More generally,
it is a mathematical framework that unifies deep learning while also providing a method
and theory to design high-quality models [1]. GDL proposes thinking of neural network
architectures through the lens of invariants and symmetries. When thought of this way,
we can compare GDL to Felix Wang’s Erlangen program [2], which proposed methods to
characterize different geometries. In this thesis, we present a self-contained presentation
of the current state of geometric deep learning, both in terms of theory and practice, as
presented in the seminal work by Bronstein et al. and in today’s literature. Readers should
have some background in statistics, linear algebra, and multivariable calculus. A background
in algebra, geometry, and analysis is helpful for certain parts of the thesis, but we provide
nearly all necessary definitions. In particular, we do not assume background in machine
learning or deep learning. To that end, there may be content that seems rudimentary to
either the machine learning expert or to the geometry expert, but this is necessary to enable
accessibility for both groups. We begin by covering the fundamentals of machine learning
and deep learning as well by providing motivation for GDL. We then develop the theory of
GDL and utilize it to view existing deep learning models as GDL models and to propose a
methodology for constructing GDL models. We conclude by presenting several applications
of GDL. The contents of this thesis are of value to both practitioners and theorists interested
in either geometry or machine learning.

iii

Acknowledgements

I would like to thank Professor Boaz Barak and Professor Clifford H. Taubes for advising
my thesis as well as my friends for their support throughout my undergraduate career. In
particular, I want to thank Willam Zhang, Yash Nair, Ted Pyne, Junu Lee, Brian Tobin, and
Abishrant Panday (who all supported my thesis writing to some extent and more generally
my mathematics career) as well as Ilkin Bayramli, James Devaney, Alberto Mosconi, Dia-
mante Balcazar, Henry Cerbone, Andrés Rosales, Eryk Pecyna, and Rohil Badkundri who
have otherwise had a substantial impact on my college experience. It’s been a tremendous
ride gentlemen.

My journey to machine learning began in high school where I was fortunate to be advised
by Dr. Roland Dunbrack. I still reminisce over the almost hour-long drives to his lab where
we would discuss clustering algorithms and protein structure. I had the fortune to continue
my foray into machine learning for biology at D. E. Shaw Research where I was advised by
Dr. Paul Maragakis and Hunter Nisonoff. This was where I first worked on deep learning. I
also had the privilege of working with the Sequin team at Google Brain where I was advised
by Dr. David Belanger and David Dohan. Finally, the people who have had the greatest
impact on my career to date are at Dyno Therapeutics. Specifically, I would like to thank
Dr. Saum Sinai who first introduced me to Dyno and took a chance on me as well as Stephen
Malina who has been a phenomenal manager and Eryney Marrogi who helped make me feel
welcome. Seeing Dyno grow from a team that could (and would) fit in an over-sized cubical
to nearly 100 people has been awe-inspiring.

Finally, I would like to thank my parents, Dr. Firoozeh Ghadyary-Khorzooghy and
Mohammad Reza Shanehsazzadeh, who took the greatest chance on me by immigrating to
the U.S. from Iran. Mom and dad, thanks for always being there for me. I owe you the
world and, at the very least, this thesis which I dedicate to you.

iv

Chapter 1

Introduction

There has never been a better time for the study and practice of machine learning [3, 4] than
now. Machine learning, in particular deep learning [5], has in recent years revolutionized
a variety of fields including natural language processing [6], computer vision [7], game the-
ory [8], biology [9], chemistry [10], physics [11], and even pure mathematics [12]. This has
resulted in an explosion of excitement for machine learning amongst academic groups, large
companies such as Google and Meta which boast massive research divisions, and industry in
general which has seen a substantial uptick in machine learning and deep learning startups
across several sectors [13].

The topic of this thesis is not machine learning in general or even deep learning, but the
emerging sub-field that is geometric deep learning (GDL) [1]. What exactly is geometric deep
learning and how distinct is it from deep learning? At a high level, GDL is deep learning
with the integration of geometric priors on the data. Let’s motivate this with two examples,
one toy and another practical.

Suppose that we are dealing with data that has the plus sign: + as its underlying
manifold (Definition 31). In other words, we assume that the data lies on a structure shaped
liked a plus sign. Generally speaking, we assume a Euclidean geometry prior on our data,
however it is clear that this geometry would not apply to our data well. To see why not,
note that under the Euclidean prior we would assume that the distance between two adja-
cent ends of the plus sign, denoted as y, is only

√
2 times larger than the distance between

an end to the center, denoted as x. In reality, the distance between two adjacent ends is 2
times larger than the distance between an end to the center (i.e. y = 2x), since to navigate
a path between adjacent ends we would have to go through the center. The Euclidean prior
assumes that straight-line navigation between points is possible, which is not always the case.

For a more practical example we will consider AlphaFold [9] from DeepMind1. AlphaFold
is a highly accurate protein structure/folding prediction model that substantially outper-

1https://deepmind.com/

1

https://deepmind.com/

formed its competitors in the CASP142 structure prediction competition. Proteins consist of
chains of amino acids which form a 3-D structure [14]. Proteins are equivariant under rigid
motions, also known as Euclidean transformations, consisting of rotations and translations.
To see this consider Figure 1.1 (“Ramachandran Plot” - Wikipedia), which depicts an ide-
alized protein backbone along with the dihedral angles that define its structure. Rotating
or translating the entirety of this structure does not alter it and so we expect a protein and
a rotated and translated version of said protein to have the same properties. More mathe-

Figure 1.1: Idealized Protein Backbone with Dihedral angles Φ,Ψ, ω

matically, we say that proteins are SE(3)-equivariant where SE(3) is the special Euclidean
group in 3-dimensions:

SE(3) =

{
M : M =

(
R r
01×3 1

)
, r ∈ R3, R ∈ R3×3, RRT = R⊤R = 1, detR = 1

}
AlphaFold’s loss functions and novel attention mechanisms are designed to enable SE(3)-
equivariance, allowing for the model to learn over the entire SE(3) group of transformed
proteins, which is pivotal to its success [15]. We will discuss loss functions and the attention
mechanism [16] later. At this point we only note their existence and importance.

The remainder of this introductory chapter presents the basics of machine learning and
deep learning and discusses key challenges that motivate the field of geometric deep learning.
We present this content in order to keep the thesis relatively self-contained and because
machine learning is generally regarded as a statistics and computer science discipline and
not a sub-field of mathematics. The more experienced reader is welcome and encouraged to
skim or skip parts as they deem fit.

2https://predictioncenter.org/casp14/

2

https://en.wikipedia.org/wiki/Ramachandran_plot
https://predictioncenter.org/casp14/

1.1 Fundamentals of Machine Learning

What does it mean to learn? This question is beyond the scope of this thesis but the field
of machine learning offers a small approximation to an answer for this question. Broadly
speaking, a machine learning algorithm is an algorithm that is able to update itself or learn
according to data it is provided [3]. We can further divide machine learning into three sub-
disciplines: supervised learning which involves labeled data, unsupervised learning which
involves unlabeled data, and reinforcement learning which involves agents learning how to
maximize rewards. There are also more specific sub-disciplines such as transfer learning and
semi-supervised learning where models first learn to tackle an “upstream” task and then
attempt to use that knowledge to improve performance on a “downstream” task. We will
explore each of these three key types of machine learning along with some examples.

1.1.1 Supervised Learning

In the supervised learning context our dataset D has labels:

D = {(x1, y1), (x2, y2), ..., (xn, yn)}.
Each xi is a set of features used to model the data and the corresponding value yi is a label
to be modeled. Features can be quantitative (such as age, height, or weight), qualitative
(such as a text passage), and even high-dimensional or multi-dimensional (such as the pixels
in an image or pairwise atomic distances in a molecule). Regardless of what the features are,
we can model them as a high-dimensional vector xi ∈ Rn. Labels can be just as complex as
features but tend to be lower-dimensional, so we again model yi ∈ Rm. We generally assume
that the elements of the dataset are sampled independently and with identical distribution
(IID) from some distribution.

The goal of supervised learning is to find a model f that predicts the labels:

f : Rn → Rm such that ŷi = f(xi) ≈ yi.

To measure the performance of our model we use a train set and a test set, which are disjoint
subsets of the original dataset:

D = Dtrain ∪ Dtest, Dtrain ∩ Dtest = ∅.
The reason for the disjointness is to measure the model’s performance on out-of-distribution
data. Generally speaking, we randomly select a subset of the data (around 80% in practice)
to be training data and the remainder to be test data. To train the model we optimize a
loss function L of the model on the train data. At a high-level, L measures the deviation
between the true labels yi and the predicted labels ŷi = f(xi) for (xi, yi) ∈ Dtrain. For the
m = 1 case where our labels are scalars a common loss function is the mean square error or
MSE:

LMSE(f) =
1

|Dtrain|
∑

(xi,yi)∈Dtrain

(yi − ŷi)
2, where ŷi = f(xi).

3

1.1.1.1 Predicting Protein Stability

Let’s look at an example of supervised learning from the protein space. Modeling protein
function is a problem of great interest [17]. In Shanehsazzadeh et al., the authors use
linear regression and convolutional neural network ensembles to model protein stability,
each of which are scalar values (we will explore these models later, for now consider them
abstractly as functions). Each protein sequence is a length L string on an alphabet A of
size approximately 20 (corresponding to the 20 amino acids): |A| = 20. To represent each
protein, we use the one-hot encoding where we represent the element ai ∈ A with the vector
ei consisting of all zeroes except in the ith index. We then map

AL ∋ P = (ai1 , ai2 , ..., aiL) →

ei1
ei2
...
eiL

 ∈ RL×|A| = RL×20.

The models are trained to predict the scalar protein stability values. See Figure 1.2 (Figure
2 of Shanehsazzadeh et al. [17]) for plots of their predicted values versus the true values:

Figure 1.2: Predicted vs. True Stabilities for Linear Regression Model (Left) and Ensemble
of CNN Models (Right). Note that an ensemble of models is an average of multiple models.

1.1.2 Unsupervised Learning

In the unsupervised learning context our dataset D does not have labels:

D = {x1,x2, ...,xn}.

Each xi is again a set of features like in the supervised learning context. The goal of
unsupervised learning is to learn insights about the data without using labels. There are
several examples of unsupervised learning but in many ways it is more like an art form than
supervised learning is. Let’s cover a few of these examples:

4

1.1.2.1 Clustering

Clustering involves grouping elements of a dataset D into disjoint clusters:

D → {C1, C2, ..., Cn} such that D =
n⋃
i=1

Ci, Ci ⊂ D, Ci ∩ Cj = ∅ (i ̸= j).

See Figure 1.3 (“Cluster analysis” - Wikipedia) for a visual of density-based clustering.

Figure 1.3: Density Based Clustering

Clustering is useful for knowledge discovery and has applications to many fields including
bioinformatics (e.g. genetic sequence modeling) and marketing (e.g. determining groups of
consumers based on shopping habits).

There are many different clustering algorithms and methods. We will look at two popular
ones. The most popular algorithm is k-means, which is a centroid-based clustering algorithm
that finds a set of k points c = {c1, c2, ..., ck} (referred to as centroids) in the data and builds
clusters C = {C1, C2, ..., Ck} around these points with ci ∈ Ci. The algorithm finds clusters
C by minimizing the sum of the intra-cluster sum of squares:

C∗ = argmin
C

k∑
i=1

∑
x∈Ci

∥x− ci∥2,

where ∥·∥ indicates the 2-norm (Definition 18). Note that in general we will use this notation
to indicate the 2-norm unless otherwise specified.

Another popular algorithm is density-based spatial clustering of applications with noise
(DBSCAN) [18]. DBSCAN has two parameters ε ∈ R+ and minPts ∈ N. The algorithm
considers an ε-neighborhood (Definition 26) of each point in the data and any point that has
at least minPts many neighbors (points in said neighborhood) is labeled a core point. Then
points are connected to each other based on ε-proximity and the connected components of
this graph are taken to create initial clusters. Any remaining points are assigned to a cluster
if they are an ε-neighbor of (within ε of) any point in that cluster, otherwise they are labeled
as noise. DBSCAN is useful when the number of clusters is difficult to predict and when the
structure of the data is not well understood, but it is still sensitive to its parameters.

5

https://en.wikipedia.org/wiki/Cluster_analysis

1.1.2.2 Language Modeling

Language modeling is a task in natural language processing that aims to learn a model f
that predicts a probability distribution over sequences of words:

f(w1, w2, ..., wn) ↔ P(w1, w2, ..., wn), wi a word in the corresponding language,

where the bidirectional arrow indicates a correspondence between f and P (most models do
not predict the probability directly). More intuitively, note that the sentence “I love my
mother” should have a much higher probability than the string of words “mother boat dog
Jeep.” This is an unsupervised learning task because the model sees unlabeled sequences of
words in a particular language.

In the past, Markov models were used for language modeling, however deep learning,
specifically the transformer model [16], is the state-of-the-art today. A major moment for the
field occurred when OpenAI3 unveiled Generative Pre-trained Transformer 3 (GPT-3) [6], a
175 billion parameter deep language model that shattered previous state-of-the-art results in
multiple language tasks including question-answering, reading comprehension, translation,
text generation, and even arithmetic. GPT-3 is perhaps the closest model to passing a
language-based Turing test [19].

1.1.3 Reinforcement Learning

Reinforcement learning describes algorithms designed to have an agent learn an optimal
policy to maximize the reward it receives [20]. The reward is modeled by a reward func-
tion, which could range from binary functions (such as winning or losing a game) to more
complicated functions (such as total winnings in a game of poker). The standard model for
reinforcement learning uses a Markov decision process (MDP) model which consists of:

1. S a set of states for the environment and agent

2. A a set of actions the agent can take

3. P (s, a, s′) = P(St+1 = s′|St = s, At = 0), which is the transition probability of the
agent ending up at state s′ at time t+ 1 having been at state s and taking action a at
time t

4. R(s, a, s′), which is the reward the agent receives after moving from state s to s′ via
action a

The goal of reinforcement learning is to learn an optimal policy π defined as

π : S × A→ [0, 1] such that π(s, a) = P(At = a|St = s),

3https://openai.com/

6

https://openai.com/

where optimality means that π maximizes cumulative rewards.

A variety of methods exist to solve for π including value iteration, policy iteration, tem-
poral difference learning, Q-learning, and deep learning methods such as deep Q-learning [21].

Reinforcement learning has been highly successful at learning to play games at super-
human levels. These games can be of quite high complexity, even including the game of
Go. In fact, DeepMind’s AlphaGo model [8] was able to beat the world Go champion Lee
Sedol4. More recently, DeepMind’s MuZero model [22] was able to master a number of games
without even knowing the rules and it was recently used for YouTube video compression5,
opening the door to industrial applications.

1.1.4 Classical Machine Learning

While the topic of this thesis is a sub-field of deep learning, it is important to understand
classical machine learning which preceded deep learning. Classical machine learning models
are generally much less complex and “shallow” than deep learning models. They tend to be
more interpretable as well and require feature engineering. We dive into the tried and true
linear regression model as an example.

1.1.4.1 Linear Regression

Linear regression is used for supervised learning. For a practical example see Figure 1.2.
Suppose we have n-dimensional features and want to model scalar labels. Then a linear
regression model is parametrized by β ∈ Rn+1 such that:

ŷi = fβ(xi) = β0 + β1xi1 + β2xi2 + · · ·+ βnxin = β0 +
n∑
j=1

βjxij.

If we let x′
i = (1, xi1, xi2, ..., xin) and have N samples in our dataset then we can use matrix

notation to write

y′ = Xβ where y′ =

y1
y2
...
yN

 , X =

x′
1

x′
2
...

x′
N

 =

1 x11 x12 . . . x1n
1 x21 x22 . . . x2n
...

...
. . .

...
...

1 xN1 xN2 . . . xNn

 , β =

β0
β1
...
βn

 .

To solve for β we minimize the loss function L(fβ) = 1
N

∑N
i=1(yi − fβ(xi))

2.

Claim 1. The optimal solution that minimizes the loss function L(fβ) is β̂ = (XTX)−1XTy

where y =
(
y1 y2 . . . yn

)T
.

4The Google DeepMind challenge match - DeepMind
5MuZero’s first step from research into the real world - DeepMind Blog

7

https://deepmind.com/alphago-korea
https://deepmind.com/blog/article/MuZeros-first-step-from-research-into-the-real-world

Proof. Write

L(fβ) =
1

N

N∑
i=1

(yi − fβ(xi))
2 ∝ ∥y −Xβ∥2 = (y −Xβ)T(y −Xβ)

= yTy − yTXβ − βTXTy + βTXTXβ.

Then compute the gradient of the loss function

∂L(fβ)
∂β

∝ −2XTy + 2XTXβ.

Setting the gradient to 0 gives us β̂ = (XTX)−1XTy. The last step is to show that the

Hessian is positive definite. Note that
∂2L(fβ)
∂β2 ∝ 2XTX. The matrix XTX is a Gram

matrix which is positive semi-definite and positive definite if and only if the columns of X
are linearly independent, which we assume.

We see that the solution to linear regression is quite tractable. It is also worth noting
that the model is very interpretable. The intercept β0 is the mean value assuming all features
are 0. The weights βi for i ≥ 1 correspond to the ith feature in the data. The sign of βi gives
the direction of the correlation and |βi| gives a magnitude of the impact of the ith feature.

1.1.5 Deep Learning and Neural Networks

Our last stop before covering geometric deep learning is an overview of deep learning basics.
In this thesis, we will consider deep learning models to be neural networks.

Neural networks consist of multiple layers of input-output transformations with non-
linear activations in between. The standard non-linear activation function is the Rectified
Linear Unit (ReLU):

ReLU(x) = max(0, x).

The intuition behind the ReLU is that it mimics human neurons which do not fire unless they
reach some activation threshold. Mathematically, non-linear activations give deep learning
models their powerful expressivity. We thus write this model in the form

FDeep(x) = An ◦ ReLU ◦ An−1 ◦ ReLU ◦ · · · ◦ A2 ◦ ReLU ◦ A1(x),

where n is the number of layers, each Ai is a matrix transformation of appropriate dimension,
and ReLU applied to a vector is done so element-wise. If each Ai is a linear map then we
say the network is fully-connected. Generally speaking, for a model to be “deep” we take
n > 2 (otherwise, it is considered a shallow model). Also, note that ReLU is not the only
non-linear activation function and multiple others are used in practice.

8

Neural networks have massive expressive power, which is often described using a variety
of universal approximation theorems. These theorems state something along the lines of “for
any ‘reasonable’ function there exists a neural network with finite depth (number of layers)
that can approximate it.” We present one of these theorems and its weak converse here.
The theorem is adapted from Park et al. and for a proof we recommend their paper to the
reader [23].

Theorem 2 (Universal Approximation Theorem). Define a fully-connected ReLU network
of depth d to be a neural network with d layers with ReLU activations between layers. For
any f ∈ Lp(Rn,Rm) and ε > 0 there exists a fully-connected ReLU network F of depth
dnm = max(n+ 1,m) such that ∫

Rn

∥f(x)− F (x)∥p < ε.

Additionally, there exists some f ∈ Lp(Rn,Rm) and ε > 0 such that the above approximation
bound does not hold for any fully-connected ReLU network F with depth less than dnm.

With Theorem 2 we see that as long as our data can be modeled by a “reasonable”
function (a function in Lp (Definition 19)) there exists some neural network that can ap-
proximate it arbitrarily closely. This implies the expressive power of neural networks, but
we have not yet shown how to find a neural network to model a specific task. Unlike the case
of classical machine learning models such as linear regression, neural networks can become
very complicated both in terms of size (GPT-3 [6] has 175 billion parameters) and in terms
of complexity (the non-linear activations, for example, make the function complicated). Be-
cause of this, we cannot hope to analytically optimize the loss function by computing its
gradient and setting it to 0 (like we did for linear regression). However, the gradient of the
loss function is still relevant to optimizing it.

Neural networks are trained using the gradient descent algorithm. The intuition behind
gradient descent is that moving against the gradient of a differentiable function leads to a
local minimum of said function. Gradient descent works as follows:

1. Let Fω be a neural network with parameters ω. Initialize ω0 = ω (note that ω can be
randomly initialized).

2. Consider the loss function L(Fω), which is a function of the parameters ω. The loss L
could be a variety of things as long as it is a proxy for some kind of model performance
and is differentiable, convex, and has Lipschitz continuous gradient. Two common loss
functions are the mean squared error (MSE) for regression and the cross-entropy loss
(CE) for classification. We define these loss functions here. Note that for the cross-
entropy loss we expect the model to predict one of k categories and thus it should
output a vector (p1, p2, ..., pk) with pi the probability that the input is assigned to
category i (as a result pi ∈ [0, 1] and

∑k
i=1 pi = 1).

LMSE(Fω) =
1

|D|
∑

(x,y)∈D

(y − Fω(x))
2, y ∈ R.

9

LCE(Fω) = − 1

|D|
∑

(x,y)∈D

log(Fω(x)y), y ∈ {1, 2, ..., k}.

3. Repeatedly update the model parameters using the formula:

ωn+1 = ωn − η∇L(Fωn), η ∈ R+.

Continue updating the parameters until some condition is met, such as the loss at-
taining some value or after some number of iterations are completed. Note that the
parameter η is referred to as the learning rate. It is generally small to prevent the
update from overshooting the local minimum.

We now prove that gradient descent minimizes the loss function (under certain assumptions).

Theorem 3 (Convergence of Gradient Descent). Let L be a loss function. We abuse notation
and write L(ω) instead of L(Fω) to highlight the fact that the loss is a function of the
parameters ω ∈ Rp. We assume that L is convex, differentiable, and has an L-Lipschitz
continuous gradient with respect to ω so that ∥∇L(ω) − ∇L(ω′)∥ ≤ L∥ω − ω′∥. Suppose
that the optimal set of parameters are ω∗ = argminω∈Rk L(ω). If we run k iterations of
gradient descent with learning rate η ≤ 1

L
and starting at ω0 then we will find ω1,ω2, ...ωk

such that
L(ω1) > L(ω2) > ... > L(ωk) ≥ L(ω∗),

and, in particular, gradient descent has convergence rate O
(
1
k

)
:

L(ωk)− L(ω∗) ≤ ∥ω∗ − ω0∥2

2kη
.

Proof. We adapt a proof from [4, 24].

We take a 2nd order approximation of L around L(ω). It follows from the fact that ∇L
is L-Lipschitz that

L(ω′) ≤ L(ω) +∇L(ω)T(ω′ − ω) +
1

2
∇2L(ω)∥ω′ − ω∥2

≤ L(ω) +∇L(ω)T(ω′ − ω) +
1

2
L∥ω′ − ω∥2.

Now substitute ωn for ω and ωn+1 = ωn − η∇L(ωn) for ω
′:

L(ωn+1) ≤ L(ωn) +∇L(ωn)
T(ωn+1 − ωn) +

1

2
L∥ωn+1 − ωn∥2

= L(ωn)− η∇L(ωn)
T∇L(ωn) +

1

2
L∥η∇L(ωn)∥2

= L(ωn)− η

(
1− ηL

2

)
∥∇L(ωn)∥2

10

≤ L(ωn)−
η

2
∥∇L(ωn)∥2,

where in the last line we use the fact that η ≤ 1
L

=⇒ 1 − ηL
2

≥ 1
2
. The result implies

that as long as ∥∇L(ωn)∥2 > 0 (i.e. we have not reached the minimum) we will have
L(ωn) > L(ωn+1), as desired. Note that we relied on the learning rate being small: η ≤ 1

L
.

If the learning rate were too large the proof would not hold and we might “overshoot” the
minimum.

Now for the convergence rate result, note that since L is convex we have

L(ω∗) ≥ L(ω) +∇L(ω)T(ω∗ − ω) =⇒ L(ω) ≤ L(ω∗) +∇L(ω)T(ω − ω∗).

Substituting ωn for ω and using our earlier result we have

L(ωn) ≤ L(ω∗) +∇L(ωn)
T(ωn − ω∗) =⇒

L(ωn+1) ≤ L(ω∗) +∇L(ωn)
T(ωn − ω∗)− η

2
∥∇L(ωn)∥2 =⇒

L(ωn+1)− L(ω∗) ≤ 1

2η

(
2η∇L(ωn)

T(ωn − ω∗)− η2∥∇L(ωn)∥2
)

=
1

2η

(
∥ωn − ω∗∥2 −

(
∥ωn − ω∗∥2 − 2η∇L(ωn)

T(ωn − ω∗) + η2∥∇L(ωn)∥2
))

=
1

2η

(
∥ωn − ω∗∥2 − ∥ωn − η∇L(ωn)− ω∗∥2

)
=

1

2η

(
∥ωn − ω∗∥2 − ∥ωn+1 − ω∗∥2

)
.

Finally, we derive the desired result:

L(ωk)− L(ω∗) ≤ 1

k

k∑
n=1

(L(ωn)− L(ω∗)) ≤ 1

k

k∑
n=1

1

2η

(
∥ωn−1 − ω∗∥2 − ∥ωn − ω∗∥2

)
=

1

2kη

(
∥ω0 − ω∗∥2 − ∥ωk − ω∗∥2

)
≤ ∥ω0 − ω∗∥2

2kη
.

In practice, gradient descent can often not be utilized because of the size of the dataset
(which can make the loss function computation intractable). Instead, stochastic gradient
descent (SGD) is used. With SGD, we split our data into multiple batches and use each of
those batches to estimate the loss function by running the gradient descent update one batch
at a time. This sacrifices some accuracy in the form of estimation inaccuracy but allows for
tractability. SGD has similar convergence guarantees as gradient descent, which for the sake
of brevity we will not present but we refer the reader to [4] for a proof. There are numerous

11

versions of SGD used in the field such as the Adam optimizer [25].

The last thing to point out is the actual gradient computation. This can be done using
the backpropagation algorithm which uses dynamic programming along with the chain rule
from calculus. We will not discuss backpropagation extensively since it is primarily a prac-
tical detail and refer the curious reader to [4] for proper treatment of the algorithm.

Having presented some basic theoretical results about neural networks we now discuss
some prominent neural network architectures.

1.1.5.1 Feedforward Neural Networks

Feedforward neural networks consist of compositions of linear maps (known as layers) along
with non-linear activations between layers. For an n-dimensional feature vector and m-
dimensional target vector let f1, f2, ..., fk be linear maps such that fi(v) = Wiv + bi with
W1 ∈ Rh1×n and b1 ∈ Rh1 , Wi ∈ Rhi+1×hi and bi ∈ Rhi+1 for 1 < i < k, andWk ∈ Rm×hk and
bk ∈ Rm. The matrices Wi and vectors bi are referred to as weights and biases, respectively.
The variables hi ∈ N are referred to as hidden dimensions as they correspond to the size of
the hidden layers of the model (intermediary states of the model used for computation). Let
ϕ1, ϕ2, ..., ϕk−1 be non-linear activation functions (such as ReLU). We define a feedforward
neural network F with depth (number of layers) k for x ∈ Rn such that

F (x) = fk ◦ ϕk−1 ◦ fk−1 ◦ ϕk−2 ◦ fk−2 ◦ · · · ◦ ϕ2 ◦ f2 ◦ ϕ1 ◦ f1(x) ∈ Rm.

Note that the non-linear activations are essential for the model’s expressive power since
Ai ◦ Ai−1 is simply another linear map. Also, note that this is not the only feedforward
neural network architecture. There are many other versions that are in some way distinct
from this standard model.

1.1.5.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are used to model sequential data such as time-series
data. RNNs correspondingly have sequential hidden states that update each other while
also updating and being updated based on the input. Let (x1, y1), (x2, y2), ..., (xτ , yτ) be our
sequential features and labels. Let {ht : 1 ≤ t ≤ τ} be hidden states. Let {Ut : 1 ≤ t ≤ τ}
be weights corresponding to input to hidden connections. Likewise let {Vt : 1 ≤ t ≤ τ}
correspond to hidden to input connections and let {Wt : 1 ≤ t ≤ τ} correspond to hidden to
hidden connections. Let {bt : 1 ≤ t ≤ τ} and {ct : 1 ≤ t ≤ τ} be biases. The RNN performs
updates from t = 1 to t = τ as follows:

1. at = Wtht−1 + UtXt + bt (update on previous hidden state and current input)

2. ht = ϕt(at) (apply non-linear activation) — We often use ϕi(x) = tanh(x) = 1− 2
1+e2x

.

3. ot = Vtht + ct (set current output state based on current hidden state)

12

4. ŷt = T (ot) (predict output based on output state) — The function T depends on what
kind of output we wish to predict. For classification with yt ∈ {1, 2, ..., k} we could use

T (ot) = softmax(ot)

=

(
1∑k

i=1 exp(oti)

)(
exp(ot1) exp(ot2) . . . exp(otk)

)
=
(
pt1 pt2 . . . ptk

)
.

Note that we have implicitly assumed ot to be k-dimensional. We see that each pti ∈
[0, 1] and

∑k
i=1 pti = 1, giving us a probability distribution. We then model pti =

P(yt = i).

RNNs are trained with a variant of backprogation known as backpropagation through
time which computes gradients based on the recurrence relations by unwinding an RNN’s
computational graph. As was the case with feedforward neural networks, there are multiple
variants of RNNs. For example, there is the Long Short Term Memory (LSTM) network,
which is designed to deal with the vanishing gradient problem. RNNs rely on past hidden
states (information in the past) to compute gradients. Looking too far back though can lead
to arbitrarily small gradients which end up “vanishing” (being approximately 0). LSTMs are
designed to mitigate this. Another interesting example is the Bidirectional LSTM (BiLSTM)
which updates states both based on the previous state and the subsequent state. This is
useful for modeling non-directional sequential data like protein sequences [26].

1.1.5.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are designed for grid-like data and use convolution
somewhere in their architecture. For a discrete input x and kernel w the 1-dimensional
convolution is given by:

C(i) = (x ∗ w)(i) =
∞∑

j=−∞

x(j)w(i− j).

Note that we use a sum instead of an integral as we are doing a discrete convolution. For a
2-dimensional input X and kernel W we have the 2-D convolution:

C(i, j) = (X ∗W)(i, j) =
∑
k

∑
ℓ

X(k, ℓ)W (i− k, j − ℓ).

See Figure 1.4 (Page 69, Figure 14 of Bronstein et al. [1]) for a visual of convolution.
We can think of convolution as matrix multiplication if we use highly constrained Toeplitz
matrices or circulant matrices. In practice, various other methods are used to minimize
computational cost.

CNNs offer a number of benefits including sparseness, parameter sharing, and transla-
tional equivariance. By choosing a kernel that is smaller than our input we can sparsely learn

13

relevant features from our input while also sharing parameters for different regions of the
input, giving us the former two properties. Translation equivariance follows from properties
of the convolution. Specifically, if we take f : X → X ′ where X ′(x, y) = X(x −m, y −m)
then applying f to X and convolving is equivalent to convolving and then applying f to the
convolved output.

Figure 1.4: Convolution with a Filter (Blue)

After convolution there are usually two steps in a CNN. First, a non-linear activation
function is applied to the convolved output. Then, we apply pooling, which is essentially an
aggregation operation. For example, max pooling involves taking the largest value in each
small grid of the convolved output. Operations like pooling can be thought of as coarsening
their input. We will see the importance of coarsening in Chapter 2.

There are multiple different CNN architectures ranging from having just one convolution
layer to having many. There are also different architectures such as dilated convolutions
which “skip” parts of the input when performing convolution. For an example of CNNs in
practice see Figure 1.2.

1.1.5.4 Transformers

The transformer architecture [16] and its attention mechanism have pushed the state-of-the-
art in deep learning substantially further. The idea behind attention is to compute weights
that represent sequential context and importance. Suppose we want to model a transfor-
mation between the sequences {xi : 1 ≤ i ≤ n} and {yj : 1 ≤ j ≤ m}. How much should
a particular xi be weighed in determining a given yj? Attention mechanisms answer this
question by determining an appropriate context weight wij for the impact of xi and yj on
each other.

For a more intuitive example, let’s think about translation. Suppose I want to translate
the English sentence “I run every day” to the Spanish sentence “Corro cada d́ıa.” The word
“run” is significant in determining the unconjugated Spanish verb “correr” and “I” deter-
mines the conjugation to “Corro” so “I run” has significant weight in determining “Corro.”
Similarly, “every day” translates directly to “cada d́ıa.” We see then that “I run” should

14

have significantly less weight than “every day” in translating to “cada d́ıa.” Determining
these weights is of great importance when dealing with language and as a result it should
come as no surprise that transformer models such as GPT-3 [6] are the state-of-the-art in
natural language processing.

We now present scaled dot-product attention. Our input consists of n query vectors
{qi : 1 ≤ i ≤ n} and n key vectors {ki : 1 ≤ i ≤ n} both of dimension dk as well as n value
vectors {vi : 1 ≤ i ≤ n} of dimension dv. Define the matrices

Q =

| q1 |

| q2 |
...

| qn |

 , K =

| k1 |

| k2 |

...

| kn |

 , V =

| v1 |

| v2 |

...

| vn |

 .

Then the attention mechanism is defined as

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V ,

where the softmax is applied row-wise. Let’s break this down to better understand it. Note
that the matrix product QKT consists of the dot products between the queries and the keys:

QKT =

| q1 |

| q2 |

...

| qn |

 | | |
kT
1 kT

2 . . . kT
n

| | |

 =
[
qik

T
j

]
1≤i,j≤n .

The row-wise softmax is determined by each query’s dot products with the keys:

softmax

(
QKT

√
dk

)
= softmax

([
qik

T
j

]
1≤i,j≤n√
dk

)
=

| s1 |

| s2 |

...

| sn |

with si = softmax

(
1√
dk

(
qik

T
1 qik

T
2 . . . qik

T
n

))
.

We now have

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V =

| s1 |

| s2 |

...

| sn |

| v1 |

| v2 |

...

| vn |

 .

We can think of each si as a weight vector corresponding to query i that uses a function of
the dot product of qi with kj to determine the appropriate weight for vj.

15

Figure 1.5: The Zoo of Neural Network Architectures

Scaled dot-product attention is not the only form of attention. There are various others
such as multi-head attention which builds on scaled dot-product attention by running it in
parallel multiple times. There are even task-specific attention mechanisms like those used
for protein structure in AlphaFold [9].

1.1.5.5 Graph Neural Networks

Graph neural networks extend neural network models to data that is effectively represented
using a graph [27]. Examples of such data include molecules, proteins, and social networks.
These models are a major component of geometric deep learning with the ability to model
other neural network architectures and we will discuss them in detail later. For now we only
mention them and note that the power behind graph neural networks is a result of using the
graph structure and updating each node’s state according to its neighbors. Specifically, if
we have a graph G = (V , E) and use vi ∼ vj to denote neighbors (i.e. (i, j) ∈ E) and if we
let hti denote the hidden state of vi at step t then we have an update of the following form
(where W t

ij are learnable weights):

ht+1
i = f

 ∑
j:vi∼vj

cijW
t
ijh

t
j

 .

1.2 Motivation for Geometric Deep Learning

In the previous section, we saw a variety of different neural network architectures including
feedforward neural networks, recurrent neural networks (RNNs) for sequential data, convo-
lutional neural networks (CNNs) for grid-like data, transformers and attention, and graph
neural networks (GNNs). We presented all of these models in a relatively unique manner
without a unifying framework. We thus have a sort-of zoo of different neural network archi-
tectures akin to Figure 1.5 (“Geometric foundations of Deep Learning” - Michael Bronstein
on Medium). A framework that unites these architectures would thus be very valuable to the
field. Geometric deep learning (GDL) proposes such a framework by looking at architecture

16

https://towardsdatascience.com/geometric-foundations-of-deep-learning-94cdd45b451d
https://towardsdatascience.com/geometric-foundations-of-deep-learning-94cdd45b451d

symmetries and invariants, akin to Felix Klein’s framework for geometry in his Erlangen
program [2]. We will develop and explore this framework in the remainder of this thesis and
use it to analyze popular neural network architectures.

After having seen the Universal Approximation Theorem (Theorem 2) it might be unclear
why we would need any neural networks other than fully connected ReLU networks. While
we can approximate any “reasonable” function with a neural network the how is the tricky
part. The number of samples required to train the neural network to approximate said
function within some error is the key metric. Let us consider the class of d-dimensional
1-Lipschitz functions. The number of samples necessary to estimate this class of functions
to error ε with neural networks is O

(
ε−d
)
, which is too large in d. This is the so-called curse

of dimensionality, showcased in Figure 1.6 (Page 9, Figure 2 of Bronstein et al. [1]).

Figure 1.6: Example of the Curse of Dimensionality: Lipschitz Functions Composed of
Gaussian Kernels Placed in the Quadrants of d-Dimensional Hypercubes (Blue), Samples
Needed to Estimate Functions (Red)

One benefit of different neural network architectures is that they can potentially deal with
the high-dimensionality of inputs. CNNs for example take high-dimensional inputs (such
as images) and reduce their dimension using convolution with a kernel. This convolution
creates lower-dimensional features that are easier to model by aggregating local features in
the original input. Geometric deep learning models can offer a similar kind of solution to
the curse of dimensionality. Symmetries and invariances in the data lower the dimension of
the problem. For example, utilizing the fact that proteins are SE(3)-equivariant (i.e. they
act the same if rotated and/or translated) was a key component of AlphaFold [9].

1.3 This Thesis

In the remainder of this thesis we will rigorously develop geometric deep learning, use it to
view deep learning in a more unified manner, and study numerous applications. In Chapter
2, we present the basics of this framework along with relevant background in geometry. In
Chapter 3, we build out the framework by looking at different geometric domains. In Chapter
4, we analyze neural network architectures. And in Chapter 5, we explore applications.

17

Chapter 2

The Geometric Deep Learning
Blueprint

As we have seen, tackling the challenge of high-dimensional learning is a fundamental prob-
lem in machine learning. We seek to tackle this challenge using principles we refer to as
geometric priors [1]. Fundamentally, geometric priors on our data consist of symmetries (in-
variances of our data to certain transformations) and scale separation (the ability to recover
information from a coarser grading of our data). Many deep learning architectures utilize
these principles implicitly and making them explicit will allow us to better unify the field. For
now, we leave the reader with the example of CNNs, which use convolutions (translational
symmetry) and pooling operations (scale separation). We first present symmetry through
the lens of mathematics and in doing so provide some relevant mathematical background
and terminology. We only present the most essential background content and relegate the
rest of the supplementary content to the Appendix. We will proceed to use this language to
explain geometric priors and to create a blueprint of geometric deep learning. The familiar
reader is once again welcome and encouraged to skim and skip as they deem appropriate.

2.1 Symmetry: A Mathematical Perspective

We can think of our neural networks as operations on functions (also referred to as signals0
from a domain Ω to a space F so we naturally define the following space of functions:

Definition 4 (F -valued Functions on Ω). The space of F -valued functions on Ω is

X (Ω, F) = {x : Ω → F}.

We note the vector space structure and define addition and scalar multiplication as:

(αx+ βy)(ω) = αx(ω) + βy(ω), α, β ∈ F, x, y ∈ X (Ω, F), and ω ∈ Ω.

Furthermore, if we define an inner product ⟨·, ·⟩F on F as well as a measure µ on Ω we can

18

define an inner product on X (Ω, F) using an integral over Ω

⟨x, y⟩ =
∫
Ω

⟨x(ω), y(ω)⟩F dµ(ω).

If Ω is discrete the measure µ must be discrete (likely the counting measure) and the integral
becomes a sum. Note that we occasionally do not include F and write X (Ω) when F is clear
from the context or when F can be arbitrary.

For a practical example of this definition, consider an RGB image with resolution n×m.
The space of such images is X (Ω, F) where Ω = Zn×Zm (Zk = {0, 1, ..., k− 1} is the group
of integers modulo k under addition) represents the grid-like structure of the image and
F = [0, 1]3 represents the RGB values of a pixel.

Symmetries are of great importance to us and as such we need a way to abstract the
idea of a symmetry. Intuitively, two symmetries composed with each other should also be
a symmetry, a symmetry should be reversible, and there should be a symmetry that leaves
the system in place. These properties when made rigorous describe a group:

Definition 5 (Group). Let G be a set and · be a binary operator on G referred to as
composition that maps G×G → G. For g, h ∈ G we write g · h = gh ∈ G (this containment
property is referred to as closure). We say (G, ·) forms a group if the following properties
are satisfied:

1. There exists e ∈ G such that ge = eg = g for all g ∈ G. (existence of identity element)

2. For every g there exists h such that gh = hg = e. We denote h = g−1. (existence of
inverse element)

3. For all g, h, l ∈ G we have (gh)l = g(hl). (associativity)

We in general write G and omit the operator when it is clear from context. See Figure 2.1
(“Root of unity” - Wikipedia) for a visual example of a group.

Note that we do not in general have commutativity : gh = hg for g, h ∈ G (it could be
the case that gh ̸= hg). For an intuitive example, note that rotating a 3-D object 90◦ about
the xy-plane and then rotating 90◦ about the yz-plane is not the same as performing these
rotations in the opposite order. Commutative groups are also referred to as Abelian groups.

Definition 6 (Subgroup). Consider a group (G, ·) and H ⊂ G. If (H, ·) forms a group then
we say it is a subgroup of (G, ·).

Definition 7 (Group Generators). If G ⊂ G is such that every element g ⊂ G can be
written as a finite composition of elements of G and their inverses:

g = g1g2 · · · gn, gi ∈ G or g−1
i ∈ G

then we say that G generates G.

19

https://en.wikipedia.org/wiki/Root_of_unity

Figure 2.1: 5th Roots of Unity: We can think of the roots of unity as a group. In this case
G = {1, ω, ω2, ω3, ω4} where ω is a 5th root of unity not equal to 1. The product of two
roots of unity is ωiωj = ωi+j mod 5, which is analogous to addition modulo 5. We can thus
think of G as Z5.

Example 8 (Groups, Subgroups, and Generators). Let G = Z4 = {0, 1, 2, 3} be the integers
modulo 4 with addition as the composition operation. Then H = {0, 2} under the addition
operation is a subgroup (in fact H can be thought of as Z2). The group G is generated by
the element 1 since 1 + 1 = 2, 2 + 1 = 3, and 3 + 1 = 0. Likewise, the element 2 generates
the subgroup H since 2 + 2 = 0.

We note that while groups are interesting mathematical objects in their own right we
are concerned with how they transform or act on our data. The following definition enables
this:

Definition 9 (Group Action). Given a group G and a set Ω a group action is a mapping
which assigns each group element g ∈ G and set element ω ∈ Ω to another set element. This
mapping is compatible with the group operations.

(g, ω) 7→ g · ω ∈ Ω such that (gh, ω) = gh · ω = g · (h · ω) = (g, (h, ω)).

For brevity, we write g ·ω = gω. This definition extends to functions on Ω. Given x ∈ X (Ω)
we have

(g · x)(ω) = x(g−1ω).

We note that (g·(h·x))(ω) = ((gh)·x)(ω) (and recommend verifying this claim as an exercise
for the inexperienced reader).

20

Example 10 (SE(3) Group Action). G = SE(3) is the special Euclidean group on 3 dimen-
sions. It consists of 3-D rotations and translations. If we let Ω = R3 then the group action
of G on Ω is to rotate and translate the vector ω ∈ R3.

Note that the group action on functions is linear:

g · (αx+ βy) = α(g · x) + β(g · y), x, y ∈ X (Ω), α, β scalars.

We can think of a group action using a group representation:

Definition 11 (Group Representation). A real n-dimensional representation of a group G
is a map ρ : G → Rn×n satisfying the following properties:

1. ρ(g) is invertible for g ∈ G

2. ρ(gh) = ρ(g)ρ(h) for g, h ∈ G

If ρ(g) is unitary or orthogonal we call ρ a unitary or orthogonal representation, respectively.
We note that the action of G on X (Ω) is given by ρ(g)x(ω) = x(g−1ω). Additionally, if we
have ρ : G → Cn×n we say ρ is a complex n-dimensional representation of G.

The motivation behind our study of groups is to abstractly model symmetry. To that
end, we will define functions that are either group invariant or group equivariant.

Definition 12 (Group Invariant Function). We say a function f : X (Ω) → Y is G-invariant
if the group action of G on the input of f does not affect its output:

f(ρ(g)x) = f(x), x ∈ X (Ω), g ∈ G.

Definition 13 (Group Equivariant Function). We say a function f : X (Ω) → X (Ω′) is
G-equivariant if the group action of G on the input of f has the same affect on its output.

f(ρ(g)x) = ρ′(g)f(x), x ∈ X (Ω), g ∈ G,

where we note that there are distinct representations ρ and ρ′ of G corresponding to X (Ω)
and X (Ω′), respectively.

We have already seen an example of invariance and equivariance with convolutional neu-
ral networks (CNNs). When modeling images, shift-invariance (invariance to translations
of the image) is a desired property. The convolutional layers of a CNN are actually shift-
equivariant while the pooling operations are shift-invariant. We will see in general that an
equivariant layer followed by an invariant layer is a common method in deep learning archi-
tectures.

2.2 Domain Structure and Stability

We are almost ready to present the blueprint but before doing so we will aim to better
understand our space of problems by studying the domain.

21

2.2.1 More Granular Structure

We have thus far considered our domain Ω without paying attention to its structure. The
amount of structure we give to Ω will depend on what our objective is. In general, coarser
structures are easier to deal with computationally and we will prefer them for that reason,
but for certain problems we may need to use a more granular structure. For a physical
example, note that we may estimate planetary motions using Newtonian mechanics (coarse)
while estimating errors in quantum computers requires atomic physics (granular).

At the coarsest level we know that Ω is a set with some elements. When we think of sets
at this level we are concerned with bijections (Definition 21), which are invertible maps be-
tween sets (a bijection between two sets implies that they have the same number of elements).

At a more granular level, Ω could be a topological space (Definition 25). In this case
bijections do not capture the relevant topological structure and we instead care about home-
omorphisms (Definition 30) which are bijections between spaces that are continuous (Defini-
tion 29) and have continuous inverses. Intuitively, f is continuous if it maps an open neigh-
borhood (Definition 26) about a point x ∈ X to an open neighborhood about f(x) ∈ f(X).

There is still more granularity that we can add. For example, we can add differential
structure if Ω is a differential manifold (Definition 35), in which case we care about diffeomor-
phisms (Definition 38). These are analogous to homeomorphisms but with the requirement
of being continuously differentiable (the same requirement holds for the inverse). We may
also be able to consider distance (Definition 23) or orientation on our space. To think about
orientation intuitively, look at your left and right hands and note that they are mirror images
of each other. You cannot rotate or translate one to look like the other, you must reflect
your hand to do so. And building off the idea of distance (also known as metrics), we may be
able to endow a smooth manifold with a specific metric structure, making it a Riemannian
manifold (Definition 42).

Thus far our symmetries have been thought of as maps from the domain Ω to itself. These
maps are known as automorphisms. More generally, we are interested in isomorphisms (Def-
inition 20) which are mappings between two distinct domains Ω and Ω′ that show they are
equivalent (an automorphism on Ω is an isomorphism between Ω and itself). An example
of an automorphism would be the identity map on X = {0, 1} (the identity map is always
an automorphism and is referred to as the trivial automorphism), whereas an isomorphism
would be a map between X and Y = {a, b} that takes 0 7→ a and 1 7→ b. These maps are
bijections that preserve structure on sets so they can be referred to as a set automorphism
and a set isomorphism, respectively.

For a less contrived example, consider the group of integers modulo 5: Z5 and let G be
the 5th roots of unity (Figure 2.1) with group operation given by multiplication. We note
that for ωi, ωj ∈ G we have ωiωj = ωi+j mod 5 and for i, j ∈ Z5 we have i+ j = (i+ j) mod 5.

22

This implies that the map f which takes i 7→ ωi is an isomorphism between G and Z5. In
fact, f is a group isomorphism (Definition 22) since it respects the group structure:

f(i+ j) = ωi+j = ωiωj = f(i) · f(j).

We can extend these definitions to graphs as well:

Definition 14 (Graph Isomorphism and Automorphism). Given two graphs G = (V , E) and
G ′ = (V ′, E ′) a graph isomorphism between G and G ′ is a map f : V → V ′ that respects the
graph structure:

(f(u), f(v)) ∈ E ′ ⇐⇒ (u, v) ∈ E .

A graph automorphism on G is a graph isomorphism between G and itself.

The existence of non-trivial (non-identity) automorphisms on a graph G implies symme-
tries which may be exploitable. See Figure 2.2a (“Asymmetric graph” - Wikipedia) for a
graph with no automorphisms and Figure 2.2b (“Petersen graph” - Wikipedia) for a graph
with multiple automorphisms.

(a) Frucht Graph (b) Petersen Graph

Figure 2.2: (a) The Frucht graph has no automorphisms. (b) The Petersen graph has 120
automorphisms.

2.2.2 Stability and Local Symmetries

Our perspective on symmetry so far has been global in that we have considered transforma-
tions of the entire domain Ω. This is not sufficient to model the problem landscape though.
Consider a scene from a movie. After a short period of time it is likely that many objects
have moved from their initial frame despite the relative context of the scene staying intact.
In this case, our domain Ω is fixed but we are deforming X (Ω) over time. Now suppose the
film switches camera angles to better highlight a specific character. This is a deformation of

23

https://en.wikipedia.org/wiki/Asymmetric_graph
https://en.wikipedia.org/wiki/Petersen_graph

the domain but we still expect similar context to the previous scene. We need to properly
model these local symmetries, which are more noisy and inexact compared to the global
symmetries.

2.2.2.1 Function Stability

Consider an element of the hypothesis class f ∈ F(X (Ω)) (the hypothesis class is the set of
functions under consideration by our model). Intuitively, a small deformation of x ∈ X (Ω)
should not substantially alter our hypotheses f(x). We could then consider our small defor-
mations to be diffeomorphisms g ∈ Diff(Ω) that only slightly change x.

It is important to note though that composing multiple small deformations can lead to
a large deformation which does alter the set of hypotheses. This motivates us to consider a
specific symmetry subgroup the domain possesses: G ⊂ Diff(Ω) and to measure the proximity
of any diffeomorphism g from this subgroup (this subgroup could correspond to translations
or rotations, for example). We can measure this proximity using a complexity measure c(g)
which is 0 for g ∈ G. This gives us a condition for deformation stability :

∥f(ρ(g)x)− f(x)∥ ≤ C(c(g)∥x∥), ∀x ∈ X (Ω),

where C is a constant independent of x and we have the group action ρ(g)x(ω) = x(g−1ω).
We call such a function x geometrically stable.

Since c is 0 onG this definition of stability generalizes our rigid notions of group invariance
and equivariance with a more flexible one. Correspondingly, the complexity is relevant to
the problem and must be appropriately defined. One example for images is

c(g) =

(∫
Ω

∥∇g(ω)∥2 dω
) 1

2

,

which measures the proximity of g from a constant displacement (translation).

2.2.2.2 Domain Stability

Now we consider what happens when our domain Ω is deformed. Two contexts where this
is common are graphs and manifolds. A graph modeling human interactions could gain or
lose participants (vertices) or interactions (edges) and a manifold modeling a 3-dimensional
object such as a molecule can be transformed to match a change in the molecule.

To characterize this deformation we need an appropriate metric d on the space of domains
D (i.e. the space of graphs or of manifolds). We should have d(Ω,Ω′) = 0 for equivalent Ω
and Ω′. In the context of graphs, there is the graph edit distance which measures the mini-
mum cost of vertex and edge substitutions, insertions, and deletions necessary to transform
between graphs. With zero-cost substitutions this metric is zero for isomorphic graphs.

24

One way to construct such a distance d is using an “alignment mapping” T : Ω → Ω′

which attempts to map between the two domains in a way that best preserves structures. For
an example, let us view Riemannian manifolds (Definition 42) as metric spaces with geodesic
distances (Definition 43) dΩ and dΩ′ for Ω and Ω′. Let G be the group of isomorphisms on
D. Then we can consider deformed functions x ∈ X (Ω) =⇒ x′ = x ◦ T−1 ∈ X (Ω′) and we
have a metric:

dD(Ω,Ω
′) = inf

T∈G
∥dΩ − dΩ′ ◦ (T × T)∥,

where we have (dΩ′ ◦(T ×T))(ω1, ω2) = dΩ′(T (ω1), T (ω2)) for ω1, ω2 ∈ Ω. Note that the norm
(Definition 17) above is over the domain product space Ω × Ω and so we have converted a
distance between elements of the domains Ω and Ω′ to a distance on the entire domains.

With this infrastructure in place we can define domain deformation stability. We consider
the space of functions defined over varying domains: X (D) = {(X (Ω),Ω) : Ω ∈ D} and say
that f : X (D) → Y is stable to domain deformations if

∥f(x,Ω)− f(x′,Ω′)∥ ≤ C∥x∥dD(Ω,Ω′), ∀Ω,Ω′ ∈ D, ∀x ∈ X (Ω).

2.2.2.3 Coarsening via Scale Separation

Our notion of deformation stability has allowed us to present local symmetries which strengthen
our previous priors on global symmetry. However, we have still not achieved a sufficient de-
gree of symmetry to tackle the curse of dimensionality. We have previously discussed the
value of coarsening a representation and thus exploiting multiscale structure (information at
different structural levels of an object). We will describe this in greater detail after a brief
foray into Fourier analysis.

We can use the 1-dimensional Fourier transform to express x(ω) ∈ L2(Ω) (Definition 19)
on Ω = R using a linear combination of orthogonal basis functions φξ(ω) = eiξω and their
frequencies ξ:

x̂(ξ) =

∫
R
x(ω)e−iξω dω.

We note the connection between convolution with a filter θ and the Fourier transform via
the convolution theorem:

(x ∗ θ)(ω) =
∫
R
x(ν)θ(ω − ν) dν =⇒ (̂x ∗ θ)(ξ) = x̂(ξ) · θ̂(ξ).

The Fourier transform is able to reveal global properties of the function such as smoothness,
which is useful for symmetries.

For our multiscale representation we want to decompose x into elementary functions
that are local in frequency (like the Fourier transform) but also in space. We do this using

25

a mother wavelet ψ which produces a wavelet atom via a continuous wavelet transform:

(Wψx)(ω, ξ) = ξ−
1
2

∫
R
ψ

(
ν − ω

ξ

)
x(ν) dν.

Typically we sample the scale j and let ξ = 2−j and ω = k2−j for some constant k.

The wavelet decompositions can be used as stable representations of deformations, in
particular those that are high-frequency (for which Fourier decompositions are unstable).
Consider a shift automorphism on Ω given by g(ω) = ω − ν. The linear representation of
the shift is ρ(g) = Sν which shifts the phase of the Fourier transform:

(̂Sνx)(ξ) = e−iξν x̂(ξ).

We note that the Fourier modulus f(x) = |x̂| is shift-invariant f(Sνx) = f(x). If we have a
small translation g(ω) = ω − g′(ω) with supω∈Ω ∥∇g′(ω)∥ ≤ ε then it can be shown that

∥f(ρ(g)x)− f(x)∥
∥x∥

= O(1)

for arbitrarily small ε, suggesting the instability of the Fourier representation under defor-
mations.

Wavelets on the other hand offer the necessary stability [28]:

∥ρ(g)(Wψx)−Wψ(ρ(g)x)∥
∥x∥

= O(ε),

where ρ(g) acts on the spatial coordinate ω of (Wψx)(ω, ξ). We note that we have an ap-
proximate equivariance above and not yet an invariance.

We will aim to coarsen our domain Ω at different scales into a hierarchy Ω1,Ω2, ...,ΩJ . At
a high-level, a coarsening groups nearby points in Ω, which implies the necessity of a metric
over the domain. We can extract a notion of local stability from this coarsening. Letting
Xj(Ωj, Fj) = {xj : Ωj → Fj} we call f : X (Ω) → Y locally stable at scale j if there exists
a function fj : Xj(Ωj) → Y at scale j and a non-linear coarsening Cj : X (Ω) → Xj(Ωj) to
scale j such that f ≈ fj ◦Cj. This definition essentially says that the long-range interactions
that f depends on can be determined from localised interactions at scale j.

Coarsening via scale separation is fundamental in machine learning and shows up as local
pooling in convolutional neural networks and graph neural networks, as we will see.

2.3 The Blueprint

We now combine the ideas developed so far into a general framework for high-dimensional
learning by looking at functions in X (Ω, F) with domain Ω that has symmetry group G.

26

We have not yet arrived at a single architecture but our observations suggest a construc-
tion. The first thing to note is that for expressivity we require non-linear functions f since
otherwise by G-invariance we have:

f(x) =
1

µ(G)

∫
G

f(x) dµ(g) =
1

µ(G)

∫
G

f(gx) dµ(g) = f

(
1

µ(G)

∫
G

(gx) dµ(g)

)
, ∀x ∈ X (Ω),

where µ(g) is the Haar measure (Definition 44) of the group G (which we can think of as
assigning a volume to subsets of G) and µ(G) =

∫
G
dµ(g). The equality above indicates

that f depends on the group average of x over G, which is a disastrous result (imagine if we
represented every pixel of an image by the average pixel).

This suggests that linear invariant functions are not very powerful objects. However, lin-
ear equivariant functions do not have such constraints and are much more useful especially
since we can compose them with certain non-linear maps. Specifically, take a G-equivariant
map f : X (Ω, F) → X (Ω, F ′) and an arbitrary (potentially non-linear) map σ : F ′ → F ′′.
The composition ℓ = σ◦f : X (Ω, F) → X (Ω, F ′′), where σ : X (Ω, F ′) → X (Ω, F ′′) indicates
σ applied element-wise (i.e. (σ(f))(ω) = σ(f(ω))), is G-equivariant as well.

We can use this property to construct G-invariant functions that take the general form
MG ◦ g : X (Ω, F) → F ′′, where MG indicates taking an average over G. Adapting univer-
sal approximation theorem like arguments shows that we can approximate any G-invariant
function via this construction. We are motivated to consider localised equivariant maps
based on our comparison of Fourier and wavelet representations (which showed a tradeoff
between global invariance and deformation stability). Given a distance on Ω we say that
f is localised if (f(x))(ω) is a function only of x(ν) for ν contained in the receptive field
Nω = {ν : d(ω, ν) ≤ r} with r a small radius. Note that we cannot approximate functions
with long-range interactions using a single equivariant map g, however we can compose sev-
eral of them to do so: gJ ◦ gJ−1 ◦ · · · ◦ g2 ◦ g1. We additionally coarsen the domain between
each equivariant map. This construction allows us to increase the receptive field.

The geometric deep learning blueprint, which we will now present, consists of three com-
ponents discussed and developed in this chapter: local equivariant maps, a global invariant
map, and coarsening operators.

Definition 15 (The Geometric Deep Learning Blueprint). Take two domains Ω and Ω′ and
G a symmetry group over Ω. Consider the following components:

1. Linear G-equivariant layers: f : X (Ω, F) → X (Ω′, F ′) with f(gx) = gf(x) for all g ∈ G
and x ∈ X (Ω, F)

2. Non-linear activation functions: σ : F → F ′ applied element-wise

3. Coarsening (local pooling) operators: P : X (Ω, F) → X (Ω′, F) where Ω′ is a compact
version of Ω: Ω′ ⊆ Ω

27

4. G-invariant layers (global pooling): MG : X (Ω, F) → Y with MG(gx) = MG(x) for all
g ∈ G and x ∈ X (Ω, F)

With these components we construct a G-invariant function g : X (Ω, F) → Y :

g =MG ◦ σJ ◦ fJ ◦ PJ−1 ◦ · · · ◦ P1 ◦ σ1 ◦ f1,

where each component has appropriate input and output spaces. Note that different com-
ponents may exploit different symmetry groups G.

Figure 2.3: Blueprint Overview for Popular Neural Network Architectures

The above blueprint enables significant generality. In Chapter 3, we will investigate the
different geometric domains and in Chapter 4, we will apply the blueprint to different neural
network architectures. For now, we provide a preview by highlighting several architectures,
their domains, and their symmetry groups in Figure 2.3 (Page 30 of Bronstein et al. [1]).

28

Chapter 3

Geometric Domains: 5 Gs and an M

We now focus our discussion on the different geometric domains that we can apply geometric
deep learning to. We focus on 5 Gs: graphs, grids, groups (thought of as symmetries in a
homogeneous space), geodesics on manifolds, and gauges on tangent bundles. We also focus
on an M: meshes. We will define these terms throughout the chapter, especially for the latter
two Gs which are far more abstract than the others.

3.1 Graphs

Graphs are useful objects in many modeling contexts ranging from human behavior to
molecules. Furthermore, they are permutation-invariant, which allows us to consider symme-
tries on sets which, in addition to grids, are a special case of graphs. For sake of completion
we give a formal definition of graphs:

Definition 16 (Graph). A graph is a tuple G = (V , E) with V a set of vertices (or nodes)
and E ⊂ V × V a set of edges between vertices. We additionally endow each vertex v ∈ V
with vertex features xv ∈ Rd.

We can think of a social network as a graph where the vertices are the users, the edges
are friendships or followings, and the vertex features are user characteristics (name, age,
location, interests, ...). We can also think of a molecule as a graph where the vertices are
the atoms, the edges are bonds, and the vertex features are atomic properties.

Note that the vertices of a graph are unordered which implies that graphs are permutation-
invariant at the vertex level (i.e. a graph G and a graph G ′ derived by permuting the ver-
tices of G are isomorphic) and so functions defined on a graph should also be permutation-
invariant. Considering the context of the blueprint(Definition 15) we have domain Ω = G,
function space X (G,Rd), and symmetry group G = Σn where Σn is the permutation group
on n elements which consists of all orderings of the set {1, 2, ..., n} (we have assumed |V| = n
and that i indexes vi ∈ V).

29

To demonstrate permutation invariance we consider sets. We can think of the set V as
the graph G = (V , E) with E = ∅. We can order the vertices of our graph by creating a
matrix using their features:

X =

| x1 |

| x2 |

...

| xn |

 ∈ Rn×d.

The action of a permutation g ∈ Σn acting on X permutes the rows of the matrix which
can be represented using a permutation matrix P = ρ(g), which is a matrix of all zeroes
except for a single 1 in each row and each column. A function f with domain Rn×d is
permutation-invariant if f(PX) = f(X). A general example of such an f is:

f(X) = ϕ

(∑
v∈V

ψ(xv)

)
.

We note that ψ is applied to each vertex’s features independently and ϕ is applied to a sum
over all vertices. The sum is permutation-invariant and so f is permutation-invariant.

This invariance again has the limitation of only providing global graph information,
whereas we may be interested in local information. If a (vertex-level) function F (X) were
to transform the vertex features in the matrix X then we will want to connect the rows of X
to the rows of F (X) to understand how the vertex-level features are being modified. This
leads us to a definition of permutation equivariance where F (PX) = PF (X). The linear
transformation FΘ(X) = XΘ where Θ ∈ Rd×ℓ is an example of a permutation-equivariant
function which transforms the features xv into ΘTxv.

We now extend our definitions of permutation invariance and equivariance to graphs in
general. Let A ∈ {0, 1}n×n be the adjacency matrix of G defined such that

Auv =

{
1 (u, v) ∈ E
0 otherwise

The matrix X encodes the vertex level information of G while the adjacency matrix A
encodes the edge level information. A function on our graph then becomes a function of
X and A. Note that applying a permutation to G results in a corresponding permutation
matrix P being applied to both the rows and columns of A producing PAP T. We then say
that a (graph-level) function f is permutation-invariant if for any permutation matrix P

f(PX,PAP T) = f(X,A)

and a (vertex-level) function F is permutation-equivariant if for any permutation matrix P

F (PX,PAP T) = PF (X,A).

30

We now attempt to generate permutation-equivariant functions using the blueprint and
vertex neighborhoods which express locality. We define a neighborhood on v ∈ V as:

Nv = {u ∈ V : (u, v) ∈ E or (v, u) ∈ E}.

Note that our neighborhood is undirected. Let the neighborhood features of v be the multiset
(a set that can have duplicate elements)

XNv = {{xu : u ∈ Nv}}.

Take ϕ a function of a vertex’s features and its neighborhood features ϕ(xv,XNv). If we
construct ϕ so that it is permutation-invariant then we can use it to create a permutation-
equivariant function:

F (X,A) =

| ϕ(x1,XN1) |

| ϕ(x2,XN2) |

...

| ϕ(xn,XNn) |

 .

To prove permutation equivariance, note that we assumed ϕ to be permutation-invariant.
Therefore, applying a permutation P does not alter the values of ϕ. However, the permuta-
tion does reorder the vertices thus outputting PF (X,A), as desired.

It is important to note that unlike sets and grids (special cases of graphs) which only
rely on vertex features, graphs in general take into consideration a variable structure on the
domain and do not assume fixed relationships. Furthermore, the structure of graphs and
grids, unlike sets, allow for non-trivial coarsenings.

3.2 Grids

Now we investigate grids, which have been incredibly valuable to machine learning given the
successes in computer vision and natural language processing. Grids are indeed a special
case of graphs but their fixed adjacency permits the stronger geometric prior of translation
invariance.

We had earlier mentioned that convolution can be represented as matrix multiplica-
tion using circulant matrices. We can think of a 1-dimensional grid as a group with cyclic
structure that has vertices indexed by Zn (integers under addition modulo n). Each node
v ∈ Zn has a left and right neighbor, namely v − 1 and v + 1, respectively. We then have
ϕ(xv,XNv) = ϕ(xv−1,xv,xv+1). If ϕ is linear then ϕ(xv−1,xv,xv+1) = θ−1xv−1+θ0xvθ1xv+1

and we have a translation-equivariant function:

F (X) =

θ0 θ1 θ−1

θ−1 θ0 θ1
.

θ−1 θ0 θ1
θ1 θ−1 θ0

| x0 |

| x1 |

...

| xn−1 |

 .

31

The matrix on the left in the above expression is a circulant matrix C(θ) = [θi−j mod n]0≤i,j≤n−1

where θ = (θ0, θ1, ..., θn−1). Circulant matrices have a single value across each “diagonal” of
the matrix, which offers weight sharing (also known as parameter sharing). The connection
with discrete convolutions follows from the fact that:

(x ∗ θ)v =
n−1∑
u=0

xu mod n · θv−u mod n = (C(θ)x)v =⇒ x ∗ θ = C(θ)x.

Note that for θ = (0, 1, 0, 0, ...)T the circulant matrix S = C(θ) shifts vectors to the
right by one position. We call S a shift operator (or translation operator). Note that
circulant matrices are commutative: C(θ)C(ω) = C(ω)C(θ). From this we derive the shift
equivariance (or translation equivariance) of convolution:

SC(θ)x = C(θ)Sx.

We now use these results to show that the Fourier transform diagonalizes the convolution
operator. We will rely on the well-known fact from linear algebra that two matrices A,B are
simultaneously diagonalizable (i.e. there exists an invertible matrix S such that S−1AS and
S−1BS are both diagonal) if and only if they commute. In particular, this result implies the
existence of a common eigenbasis for the circulant matrices. We then compute this eigenbasis
using a single circulant matrix. The shift operator S has an eigenbasis that coincides with
the discrete Fourier basis:

φk =
1√
n

(
1 e

2πik
n e

4πik
n . . . e

2πi(n−1)
n

)T
, k ∈ {0, 1, ..., n− 1}.

Define the Fourier matrix Φ =
(
φ0 φ1 . . . φn−1

)
and note that the discrete Fourier

transform (DFT) can be written using this matrix:

(Φ∗x)k = x̂k =
1√
n

n−1∑
v=0

xve
− 2πikv

n (DFT) and (Φx̂)v = xv =
1√
n

n−1∑
k=0

x̂ke
2πikv

n (Inverse DFT).

Now using the fact that the eigenvalues of C(θ) are equal to θ̂ = Φ∗θ [29] we derive the
convolution theorem:

C(θ)x = Φ · diag(θ̂0, θ̂1, ..., θ̂n−1) ·Φ∗x = Φ(θ̂ ⊙ x̂),

where ⊙ indicates element-wise multiplication.

We end our discussion of grids with a derivation of the continuous Fourier transform,
which will be useful to us in other contexts. Take f defined on R and consider the shift
operator Sv defined such that (Svf)(u) = f(u−v). Consider also the Fourier basis functions
φξ(u) = eiξu. Then we have Svφξ(u) = Sve

iξu = eiξ(u−v) = e−iξveiξu = e−iξvφξ(u) implying
that the basis functions are complex eigenvectors of Sv with eigenvalues e−iξv. Note that

32

∥Svf∥ = ∥f∥ implying that the eigenvalues of Sv have magnitude 1. Note also that any two
functions with the same eigenvalue must be collinear. To see this note that if Svf = e−iξ0vf
then taking the Fourier transform we have

e−iξvf̂(ξ) = e−iξ0vf̂(ξ), ∀ξ ∈ R.

This implies that f(ξ) = 0 for ξ ̸= ξ0 which implies that f = ce−iξ0v = cφξ0 .

Now take C a linear translation-equivariant operator: SvC = CSv. Then we have

(SvC)e
iξu = (CSv)e

iξu = e−iξvCeiξu,

which suggests that Ceiξu is an eigenfunction of Sv with eigenvalue e−iξv, implying that the
Fourier basis is the eigenbasis of all translation-equivariant operators. C is then diagonal in
the Fourier domain (the system of coordinates rotated by the Fourier transform) and can be
expressed as Ceiξu = p̂C(ξ)e

iξu with p̂C a transfer function on different frequencies. Now for
a function x we have

(Cx)(u) = C

(∫
R
x̂(ξ)eiξu dξ

)
=

∫
R
x̂(ξ)p̂C(ξ)e

iξu dξ

=

∫
R
pC(v)x(u− v) dv = (x ∗ pC)(u).

This result implies that every linear translation equivariant operator is a convolution.

Two final notes: The Fourier transform can be computed in O(n log n) time using a fast
Fourier transform (FFT) algorithm (which exploits the structure of Φ). The graph Fourier
transform and an analogy to convolution for graphs can be defined using the eigenvectors
of said graph’s adjacency matrix [30]. Graph neural networks (GNNs) designed using these
convolutions can be referred to as “spectral GNNs.”

3.3 Groups

In our previous section on grids we proved an important result, namely an equivalence
between convolutions and shift-equivariant linear operators. Additionally, we showed that
shift operators are simultaneously diagonalizable via the Fourier transform. In this section,
we will generalize these results to arbitrary symmetry groups that we can integrate (or sum)
over. If our domain is the real line R then we can think of the convolution of a function x
and a filter θ as matching the input signal with shifted copies of the filter:

(x ∗ θ)(u) = ⟨x, Suθ⟩ =
∫
R
x(v)θ(u+ v) dv.

Here the symmetry group is G = R. We can generalize these ideas by looking at different
groups G. We briefly note that the above expression is really the cross-correlation, which in

33

the field of deep learning goes by convolution.

Now we define group convolution. Recall that the action of g ∈ G on x ∈ X (Ω) is
given by ρ(g)x(ω) = x(g−1ω) where ρ is a representation of G. Previously, we dealt with
the translation group G = R where v ∈ R had action of shifting the coordinates by +v.
Correspondingly, the representation is the shift operator ρ(v) = Sv with (Svf)(u) = f(u−v).
We now assume that X (Ω) is a Hilbert space and consider the inner product:

⟨x, θ⟩ =
∫
Ω

x(ω)θ(ω) dω, x ∈ X (Ω,R).

Note that our definition holds only for scalar functions on Ω. In general, for higher-
dimensional x we replace the product in the integral above with an inner product ⟨x(ω), θ(ω)⟩
in the appropriate space. We now define for x ∈ X (Ω,R) the group convolution (which takes
elements of G as inputs):

(x ∗ θ)(g) = ⟨x, ρ(g)θ) =
∫
Ω

x(ω)θ(g−1ω) dω.

The group convolution is G-equivariant since for any h ∈ G and x ∈ X (Ω) we have

(ρ(h)x ∗ θ)(g) = ⟨ρ(h)x, ρ(g)θ⟩ = ⟨x, ρ(h−1g)θ⟩ = ρ(h)(x ∗ θ)(g),

where the first equality follows by definition, the second follows from the fact that ⟨x, ρ(g)θ⟩ =
⟨ρ(g−1)x, θ⟩ (since matching x with the g-transformed filter θ is equivalent to matching the
inverse g-transformed x with θ) and because ρ(h−1g) = ρ(h−1)ρ(g), and the third equality
follows from the definition of the group action on θ.

For an example we have already worked with, consider the 1-dimensional grid: Ω = Zn
and G = Zn. We note that the group action is a shift modulo n. If we identify g ∈ G with
u ∈ {0, 1, ..., n− 1} then gv = v− u mod n and g−1v = v+ u mod n. Our group convolution
is then

(x ∗ θ)(g) =
∫
Zn

x(ω)θ(g−1ω) dω =
n−1∑
v=0

xvθg−1v =
n−1∑
v=0

xvθv+u mod n.

Note that the sum arises from the fact that the integral over the discrete group Zn is with
respect to the counting measure. The above expression coincides with our definition of con-
volution.

For a more interesting example we consider spherical convolution, which is relevant in
fields such as chemistry and molecular biology. Our domain is the sphere in 3-dimensions:

Ω = S2 = {x ∈ R3 : ∥x∥ = 1}

and our symmetry group is the special orthogonal group on 3 dimensions which consists of
rotations represented by orthogonal matrices with determinant 1

G = SO(3) = {R ∈ R3×3 : RTR = RRT = 1, detR = 1}.

34

Note that the detR = 1 condition implies that the transformations are orientation-preserving
(the orthogonal group O(3) does not require this).

We see that the action of the group SO(3) is given by an orthogonal matrix R with
determinant 1. For x ∈ X (S2) we can define the spherical convolution as

(x ∗ θ)(R) =

∫
S2

x(ω)θ(R−1ω) dω.

The spherical convolution is a function of the group SO(3), which is a 3-manifold and
in fact a Lie group (Definitions 31 and 36) and not a function of the domain S2, which is
a 2-manifold. This has important implications in the context of the blueprint since we now
must deal with X (G), which in our case is X (SO(3)). We can do this by considering group
convolution on the domain Ω = G with symmetry group G where the group action is given
by the group operation. We then have (ρ(g)x)(h) = x(g−1h) for x ∈ X (G). For spherical
convolution we convolve with another filter ϕ to find

((x ∗ θ) ∗ ϕ)(R) =

∫
SO(3)

(x ∗ θ)(Q) · ϕ(R−1Q) dQ.

We note that group convolution involves integration over the domain Ω, which for the
sake of tractability requires Ω to have small cardinality if discrete or low-dimension in the
continuous case. We can thus do convolution over domains such as SO(3) or R2, whereas
convolution over the permutation group Σn (which has n! elements) or the affine group is
not feasible. However, we may still build convolutions for large groups by considering their
actions on low-dimensional domains.

We have made an implicit assumption when dealing with domains such as the Euclidean
space, grids, and spheres. For any of these domains, we can transform a point in said domain
to any other point in the domain. We call such a domain Ω a homogeneous space if for any
ω, ω′ ∈ Ω there exists g ∈ G such that gω = ω′. We seek to move away from this assumption
in our next discussion.

3.4 Geodesics

In our discussion of the spherical convolution we mentioned the manifolds S2 and SO(3).
These manifolds have global symmetries but that is not the case for most manifolds. Man-
ifolds have two kinds of invariances that we can exploit: metric structure preserving trans-
formations and local reference frame changes.

The term “manifold” is thrown around in many contexts and thus may seem like a par-
ticularly complicated object. In fact, they model a number of objects in fields ranging from
structural biology to 3-dimensional objects in computer vision and augmented/virtual re-
ality. Manifolds offer compact representations that ignore internal structures and allow for

35

domain deformations (such as the dynamics of a protein’s structure).

We will seek to apply the blueprint to manifolds, but to do this we must first cover the
basic mathematical theory underlying manifolds. We present this here somewhat informally
and include formal definitions in the Appendix. The familiar reader is of course welcome
and encouraged to skim or skip ahead to the sections on Fourier analysis and convolution
on manifolds.

3.4.1 Manifold Basics

An n-manifold (Definition 31) is a space Ω for which there exists a neighborhood (Defini-
tion 26) around each point that is homeomorphic (Definition 30) to Rn (i.e. the space can be
mapped to Rn while preserving structure). We may also call such a space an n-dimensional
manifold. A differential manifold (Definition 35) also known as a smooth manifold is a
manifold with additional differential structure allowing for differential calculus. Manifolds
can be locally approximated around any point by TωΩ the tangent space (Definition 39),
which can be thought of as an n-dimensional plane attached to the point ω. The collection
of tangent spaces forms TΩ the tangent bundle (Definition 41). An element of the tangent
space X ⊂ TωΩ is called a tangent vector and can be thought of as a displacement from the
point ω. See Appendix Figure 5.4 (“Tangent Space” - Wikipedia) for visuals of the tangent
space and its tangent vectors and see Appendix Figure 5.5 (“Tangent Bundle” - Wikipedia)
for visuals of the tangent bundle of the circle S1.

In order to measure angles between tangent vectors and their lengths we require a Rie-
mannian metric g, which at each point ω ∈ Ω admits a smooth positive definite bilinear
function:

gω : TωΩ× TωΩ → R, gω(X,X) > 0 for all X ∈ TωΩ such that X ̸= 0.

We can use the Riemannian metric to measure angles and lengths via the following inner
product and norm, respectively:

⟨X, Y ⟩ω = gω(X, Y), ∥X∥ω =
√
gω(X,X), X, Y ∈ TωΩ.

Note that tangent vectors do not have coordinates and are instead abstract entities. A tan-
gent vector X can only be expressed as a list of coordinates x = (x1, x2, ..., xn) relative to a
local basis {X1, X2, ..., Xn} ⊂ TωΩ. The metric gω can only be expressed in this way as well
with an n× n matrix G such that gij = gω(Xi, Xj).

A Riemannian manifold (Definition 42) is a smooth manifold with a Riemannian metric.
Properties of the manifold that depend only on the metric are called intrinsic properties.
These properties are of interest since they are isometry-invariant meaning that isometric de-
formations will not alter them. We also note, as an aside, the result of the Nash embedding
theorem [31] which states that any smooth Riemannian manifold can be embedded into Rd

36

https://en.wikipedia.org/wiki/Tangent_space
https://en.wikipedia.org/wiki/Tangent_bundle

for sufficiently large d.

We call a function x : Ω → R a scalar field and note that scalar fields form a vector space
X (Ω,R) with an inner product:

⟨x, y⟩ =
∫
Ω

x(ω)y(ω) dω

with dω the volume measure induced by the Riemannian metric. A function X : Ω → TΩ
that maps each ω ∈ Ω to F (ω) ∈ TωΩ is called a tangent vector field. These functions form
a vector space X (Ω, TΩ) with inner product defined using the Riemannian metric:

⟨X, Y ⟩ =
∫
Ω

gω(X(ω), Y (ω)) dω.

We want to define vector fields by generalizing derivatives. Consider the classic differen-
tial dx(ω) = x(ω + dω)− x(ω). We unfortunately cannot apply this definition to manifolds
since they do not, in general, have a vector space structure. We can think of a vector field
as a map F : X (Ω,R) → X (Ω,R) with the following properties for any x, y ∈ X (Ω,R):

1. F (c) = 0 for constants c

2. F (x+ y) = F (x) + F (y) (linearity)

3. F (xy) = F (x)y + xF (y) (product rule)

Given x ∈ X (Ω,R) we can consider the differential dx(F) = F (x) as an extension of the
directional derivative. To see this note that we have a map (x, F) → F (x), which can be
interpreted as the displacement F ∈ TωΩ displacing x by dxω(F).

We can also think of the differential as a linear function on tangent vectors dxω : TωΩ → R
which, assuming we have a Riemannian metric, we can express as

dxω(X) = gω(∇x(ω), X).

We note that the gradient of x is a tangent vector ∇x(ω) ∈ TωΩ. Since the expression relies
only on gω the gradient is intrinsic (assuming the existence of a Riemannian metric). We
see that the gradient of a scalar field x is a vector field ∇x by considering the gradient as
an operator ∇ : X (Ω,R) → X (Ω, TΩ) which takes x(ω) 7→ ∇x(ω) ∈ TωΩ.

3.4.2 Geodesics on Manifolds

Let γ : [0, T] → Ω be a smooth curve on the manifold Ω with endpoints ω = γ(0) and
ω′ = γ(T). The derivative of the curve, known as the velocity vector, is a tangent vector

37

Figure 3.1: Example of Riemannian Geometry: Ω = S2 = {ω ∈ R3 : ∥ω∥ = 1} is a
2-dimensional Riemannian manifold. The tangent space is a 2-dimensional plane TωS

2 =
{x ∈ R3 : xTω = 0}. The Riemannian metric is given by the Euclidean inner product:
gω(x,y) = ⟨x,y⟩ω = xTy for all x,y ∈ TωS

2. The geodesics are great arcs of length

dg(ω,ω
′) = cos−1(ωTω′). The exponential map is expω(x) = cos(∥x∥2)ω +

(
sin(∥x∥)

∥x∥

)
x for

x ∈ TωS
2.

γ′(t) ∈ Tγ(t)Ω. The curves connecting ω and ω′ with minimal length, where the length of a
curve is defined as

ℓ(γ) =

∫ T

0

∥γ′(t)∥γ(t) dt =
∫ T

0

√
gγ(t)(γ′(t), γ′(t)) dt,

are called geodesics (Definition 43). Note that geodesics are intrinsic since they depend on
ℓ which is a function of the Riemannian metric.

We aim to perform convolution on geodesics, which we will do via local filters in the
tangent space. To do so we must first use geodesics to define parallel transport (a means of
transporting vectors on Ω), the exponential map (a local intrinsic map from Ω to the tangent
space), and distances via the geodesic metric (Definition 43). Before defining these objects
we note Figure 3.1 (Page 46, Figure 11 of Bronstein et al. [1]), which showcases the basics
of Riemannian geometry.

For Ω a manifold we are unable to directly add or subtract two points ω, ω′ ∈ Ω. We face
a similar issue for tangent vectors at these two points X ∈ TωΩ and Y ∈ Tω′Ω since they
belong to different spaces. We can use geodesics to move these vectors between points. Let γ
be a geodesic with endpoints ω = γ(0) and ω′ = γ(T). Let X ∈ TωΩ and define the tangent
vectors X(t) ∈ Tγ(t)Ω such that the length ℓ(X(t)) is constant and the angle between X(t)
and the velocity vector γ′(t) is constant:

∥X(t)∥γ(t) = ∥X∥ω = C, ⟨X(t), γ′(t)⟩γ(t) = ⟨X, γ′(0)⟩ω = C ′.

This process produces a unique vector at ω′: X(T) ∈ Tω′Ω. We describe this with the par-
allel transport map Γω→ω′ : TωΩ → Tω′Ω that takes X 7→ X(T). This map preserves both

38

length and angle and so it can be thought of as a rotation of the tangent vector. We can
thus associate these maps with the special orthogonal group SO(n) on the tangent bundle
(or the orthogonal group O(n) for non-orientable manifolds). The map Γω→ω′ will often be
represented by a group element gω→ω′ .

Given a point ω ∈ Ω and a tangent vector X ∈ TωΩ we can define a geodesic γX with
starting point ω = γX(0) and with direction X = γ′X(0). If we can define γX(t) for all t ≥ 0
then we call Ω geodesically complete (this is always the case for compact manifolds). For
such a manifold the exponential map, defined in the remainder of this paragraph, can be
defined on the entire tangent space. The exponential map expω : TωΩ → Ω is defined such
that expω(X) = γX(1). Let Br(0) ⊂ TωΩ be a ball of radius r about the origin in TωΩ. Note
that the exponential map deforms Br(0) into a neighborhood of ω, implying that it is a local
diffeomorphism. The largest r for which expω(Br(0)) ⊂ TωΩ is mapped diffeomorphically is
called the injectivity radius of M at ω. The injectivity radius of M is the infimum of the
injectivity radii over all points of the manifold.

The Hopf-Rinow theorem tells us that geodesically complete manifolds are complete met-
ric spaces, that is for any ω, ω′ ∈ Ω we can define a distance known as the geodesic distance
(Definition 43) between them using the length of a geodesic connecting them:

dg(ω, ω
′) = min{ℓ(γ) for γ such that γ(0) = ω, γ(T) = ω′}.

3.4.3 Isometries and Symmetries

Let η : (Ω, g) → (Ω′, h) be a diffeomorphism (Definition 38) between the Riemannian mani-
folds Ω and Ω′ with Riemannian metrics g and h, respectively. The differential dη : TΩ →
TΩ′ is a map between the corresponding tangent bundles called the pushforward. At a given
point ω the map is between tangent spaces dηω : TωΩ → Tη(ω)Ω

′ (displacement from ω by
X ∈ TωΩ causes displacement in η(ω) by dη(ω)(X) ∈ Tη(ω)Ω

′).

The pushforward allows us to associate the tangent vectors of the two manifolds and we
can similarly pullback h from Ω′ to Ω:

(η∗h)ω(X, Y) = hη(ω)(dηω(X), dηω(Y)).

If g = η∗h then η is a (Riemannian) isometry. For 2-manifolds, isometries are deformations
that do not “stretch” or “tear” the manifold.

Riemannian isometries preserve intrinsic properties such as geodesic distances implying
that they are also metric isometries:

dg(ω, ω
′) = dh(η(ω), η(ω

′)), ∀ω, ω′ ∈ Ω.

Equivalently, we can write dg = dh◦(η×η). On connected manifolds (an assumption we hold)
the Myers-Steenrod theorem provides the opposite result, namely that metric isometries are

39

Riemannian isometries.

In the context of the blueprint, functions such as η model domain deformations. If η is
an isometry then intrinsic properties of the domains are preserved. The notions of metric
dilation and metric distortion, which represent the relative and absolute impacts of η on the
geodesic distances, respectively, can be used to generalize exact isometries:

dil(η) = sup
ω,ω′∈Ω, ω ̸=ω′

dh(η(ω), η(ω
′))

dg(ω, ω′)
, dis(η) = sup

ω,ω′∈Ω
|dh(η(ω), η(ω′))− dg(ω, ω

′)|.

Note that the Gromov-Hausdorff distance between metric spaces is the smallest possible
metric distortion between the two spaces. Also, note that the domain deformation stability
condition we previously derived for functions f ∈ F(X (Ω)) can be expressed as:

∥f(x,Ω)− f(x ◦ η−1,Ω′)∥ ≤ C∥x∥dis(η).

Suppose we take η ⊂ Diff(Ω) to be an automorphism on Ω (in this context a diffeo-
morphism from Ω to itself). Then η is a Riemannian self-isometry if η∗g = g or a metric
self-isometry if dg = dg ◦ (η × η). Note that isometries form a group Iso(Ω) called the isom-
etry group with identity element given by the identity isometry that takes ω 7→ ω. Note also
that η−1 always exists since η is a diffeomorphism. A self-isometry of a manifold is thus an
intrinsic symmetry of the manifold.

3.4.4 Fourier Analysis on Manifolds

Our construction of the Fourier transform in the Euclidean domain relied on the eigenvectors
of circulant matrices, which by virtue of their commutativity are simultaneously diagonaliz-
able. We can thus define the Fourier transform on general domains using any circulant ma-
trix, in particular with a differential operator. For Riemannian geometry we will use the or-
thogonal eigenbasis of the Laplacian operator. Recall the gradient ∇ : X (Ω,R) → X (Ω, TΩ).
We can similarly define the divergence operator ∇∗ : X (Ω, TΩ) → X (Ω,R). The divergence
(sometimes referred to as div) can be thought of as measuring the net flow if we think of a
tangent vector field as a flow on the manifold. Note the adjointness of the two operators:

⟨X,∇x⟩ = ⟨∇∗X, x⟩.

The Laplacian operator on X (Ω) is defined as ∆ = ∇∗∇. We interpret the Laplacian as
the difference between the average value of a function around a point (specifically around an
arbitrarily small sphere around the point) and the value of said function at the point (from
this interpretation we see that the Laplacian is isotropic, i.e. it is invariant to direction).
Note that the Laplacian is self-adjoint:

⟨∇x,∇x⟩ = ⟨x,∆x⟩ = ⟨∆x, x⟩.

40

The left-most component of the expression is really the complexity measure we saw earlier
which measures the smoothness of x, which is also known as the Dirichlet energy :

c2(x) = ∥∇x∥2 = ⟨∇x,∇x⟩ =
∫
Ω

∥∇x(ω)∥2ω dω.

There exists an eigendecomposition for the Laplacian: ∆φk = λkφk, k ∈ N with countable
spectrum (Definition 51) for compact manifolds (an assumption we make for our manifolds).
By self-adjointness we have orthogonality: ⟨φi, φj⟩ = δij for λi ̸= λj. Note that we can
construct this eigenbasis by iteratively minimizing the Dirichlet energy:

φk+1 = argmin
φ

∥∇φ∥2 with ∥φ∥ = 1 and ⟨φ, φi⟩ = 0 for i ≤ k.

This construction gives 0 = λ0 ≤ λ1 ≤ λ2 ≤ ... which leads us to think of these eigenvalues
as analogous to frequencies in the standard Fourier transform.

We can now generalize the Fourier series for x ∈ L2(Ω):

x(ω) =
∑
k≥0

⟨x, φk⟩φk(ω) =
∑
k≥0

x̂kφk(ω).

Note that the results of Aflalo and Kimmel [32, 33] prove the following optimal bound for
the Laplacian eigenbasis: ∥∥∥∥∥x−

n∑
k=0

x̂kφ

∥∥∥∥∥
2

≤ ∥∇x∥2

λn+1

.

3.4.5 Convolution on Manifolds

We seek to construct convolution-like operations on manifolds that are intrinsic so as to
be invariant to isometries. There are two methods for this: spectral convolution using the
Fourier transform and spatial convolution via local matching with a filter.

3.4.5.1 Spectral Convolution

Spectral convolution between a function x and filter θ is defined using the Fourier transform
and the convolution theorem:

(x ∗ θ)(ω) =
∑
k≥0

(x̂k ∗ θ̂k)φk(ω).

Note that this definition is both isotropic (by virtue of the Laplacian being isotropic) and
intrinsic.

Computing the spectral convolution, as we have defined it, requires diagonalizing the
Laplacian and is thus, in general, intractable. Additionally, the high frequency eigenfunctions

41

of the Laplacian are geometrically unstable (over sensitive to domain perturbations) making
the spectral convolution unstable. Instead we can think of θ as a spectral transfer function
p̂(∆) such that

(p̂(∆)x)(ω) =
∑
k≥0

p̂(λk)⟨x, φk⟩φk(ω) =
∫
Ω

x(ω′)

(∑
k≥0

p̂(λk)φk(ω)φk(ω
′)

)
dω′.

Note that the sum in the above expression is a spectral filter with θ̂k = p̂(λk) and the
integral is a spatial filter where θ(ω, ω′) =

∑
k≥0 p̂(λk)φk(ω)φk(ω

′) is a position-dependent
kernel. The value added via this representation is that we can compute the spectral transfer
function using a finite polynomial: p̂(λ) =

∑ℓ
j=0 αjλ

j, which allows us to avoid the spectral
decomposition in computing

(p̂(∆)x)(ω) =
∑
k≥0

(
ℓ∑

j=0

αjλ
j

)
⟨x, φk⟩φk(ω) =

ℓ∑
j=0

αj · (∆jx)(ω).

3.4.5.2 Spatial Convolution

We can define spatial convolution on a manifold in a similar fashion to group convolution:

(x ∗ θ)(ω) =
∫
TωΩ

x(expω(X))θω(X) dX.

Note that θω is defined on the tangent space for each ω ∈ Ω and thus position-dependent.
If θ is intrinsic then so is the convolution defined above. We note a number of differences
between manifold and group convolution:

1. Manifolds, in general, are not homogeneous spaces meaning we cannot assume a shared
filter θ. Instead, we have position-dependent filters θω for ω ∈ Ω.

2. The filter is required to be local and defined within the injectivity radius of Ω since
the exponential map is defined locally.

3. A tangent vector X ∈ TωΩ is a geometric abstraction so we must use a local basis
βω : Rd → TωΩ to write θ(x) = θ(X) with coordinates x = β−1

ω (X).

These differences motivate us to reformulate the manifold convolution as

(x ∗ θ)(ω) =
∫
[0,1]n

x(expω(βx))θ(x) dx.

Note that the filter is defined on the unit cube in Rd (from locality) and that the convolution
is intrinsic since the exponential map is defined via geodesics.

42

Consider the map βω : Rd → TωΩ. We refer to this as a frame or gauge. We have
assumed that this frame could be carried to another manifold: β′

ω = dηω ◦ βω. There is
a difficulty here in finding such a gauge since, in general, a smooth global gauge need not
exist and because there is no notion of a canonical gauge (meaning that convolutions will
be different according to β). We note here that in practice the underlying manifold can be
constructed to be relatively smooth and even stable so as to be (approximately) isometry-
invariant. Nevertheless, despite this tension between theory and practice, we will develop
the theory in our next section on the last G: gauges.

3.5 Gauges

More generally in the field of physics, a gauge is a frame for any vector bundle (Definition 53).
A vector bundle is a collection of vector spaces V (referred to as a fiber) attached to each
point ω in a base space Ω.We can think of the vector bundle as the product Ω×V at the set
level but it may have more complicated structure. In our context, each fiber of the vector
bundle represents the feature space for a point on our manifold Ω. We can thus derive gauge
symmetry from this framework. Let Ω be an n-manifold with tangent bundle TΩ. Take a
vector field X : Ω → TΩ. Given a gauge β, we can represent X with a function x : Ω → Rn.
This function is dependent on the gauge β, which means we must change it whenever we
change the gauge so as to maintain a proper representation of X.

3.5.1 Tangent Bundles

A gauge transformation is a map g : Ω → GL(n) (where GL(n) is the general linear group of
invertible n × n matrices) that produces a unique invertible matrix for each pair of gauges
that maps between them via: β′

ω = βω ◦ gω. The corresponding coordinate representations
are related via x′(ω) = g−1

ω x(ω). The transformations act as representations ρ of GL(n).
This provides the desired equality of the vector field X:

β′
ω(x

′(ω)) = βω(gωg
−1
ω x(ω)) = βω(x(ω))

=== ==
=

X(ω)

We may also consider subgroups of GL(n) if we wish for our gauge transformations to
preserve certain properties. The orthogonal group O(n) for example preserves orthogonal-
ity while the special orthogonal group SO(n) preserves orthogonality and orientation (for
orientable manifolds). We call the group G that represents our gauge transformations the
structure group of the bundle. A gauge transformation then is a map from the manifold to
the structure group: g : Ω → G.

Connecting back to machine learning, we can think of RGB images as tangent bundles
and get an intuitive example of a gauge symmetry. An RGB image is a grid with 3 scalar

43

values assigned to each grid representing the 3 colors. The base space then is Ω = Z2 and
the fibers (feature spaces) are copies of R3. The standard coordinate representation uses

the color channels as a basis: x(ω) =
(
r(ω) g(ω) b(ω)

)T
. We could permute these color

channels to create BRG images for example and it would not change anything about the
image itself. While this operation has no practical use it demonstrates a (gauge) symmetry
of the images under the (gauge) transformation of permutation that a model (function) of
the images should respect. The structure group corresponding to these transformations is
thus the permutation group G = Σ3.

More concretely, if we have some model f of the images and we apply a gauge transforma-
tion to the images then we must correspondingly transform f (which equates to transforming
its architecture and parameters). Suppose f maps x(ω) ∈ R3 to y(ω) = f(x(ω)) ∈ Rc for
some c. According to the blueprint, the input and output of f are associated with group
representations ρin and ρout with ρin(g) = g for g ∈ G and ρout a c-dimensional representation
of G. If we apply a gauge transformation g taking x(ω) to x′(ω) then we must transform f
into f ′ = ρ−1

out(g) ◦ f ◦ ρin(g) so that the output is y′(ω) = ρ−1
out(gω)y(ω):

y′ = f ′(x′) = ρ−1
out(g)f(ρin(g)ρin(g)

−1x) = ρ−1
out(g)f(x) = ρ−1

out(g)y.

3.5.2 Gauge Symmetry

A gauge symmetry is an equivalence between gauges under a gauge transformation. De-
pending on our structure group, this equivalence could be between orthogonal gauges or
positively-oriented orthogonal gauges, for example. Returning to the blueprint, we wish to
define a function f on X (Ω) that is equivariant to such a gauge transformation. Let’s return
to the RGB example with f : R3 → Rc. If f ◦ ρin(g) = ρout(g) ◦ f then we see that f is
invariant to the gauge transformation since ρout(g)

−1 ◦f ◦ρin(g) = ρout(g)
−1 ◦ρout(g)◦f = f.

Note that unlike our previous examples, gauge transformations act not on the domain Ω but
rather on each vector x(ω) via g(ω) ∈ G.

We can consider more general examples. Take f : X (Ω,R) → X (Ω,R). Note that scalar
functions x ∈ X (Ω,R) have no orientation so a gauge transformation has representation
ρ ≡ 1 meaning these functions are guage-equivariant (really gauge-invariant but these are
equivalent in this case). We can consider a convolution-like operation using a position-
dependent filter θ : Ω× Ω → R:

(x ∗ θ)(ω) =
∫
Ω

θ(ω, ω′)x(ω) dω′.

Note the existence of different filters θω = θ(ω, ·) implies the lack of spatial weight sharing.

Now take a map between vector fields f : X (Ω, TΩ) → X (Ω, TΩ). We realize the vector
fields X, Y ∈ X (Ω, TΩ) (the input and output) relative to some gauge as x,y ∈ X (Ω,Rn).
We again have a position-dependent filter but it is multi-dimensional: Θ : Ω × Ω → Rn×n.

44

Note that Θ(ω, ω′) maps tangent vectors in TωΩ to tangent vectors in Tω′Ω. This is a
problem because the different points have different gauges, which requires the overly-strong
constraint: Θ(ω, ω′) = ρ−1(g(ω))Θ(ω, ω′)ρ(g(ω′)) for all ω, ω′ ∈ Ω, where ρ is an n × n
rotation matrix. Since we can choose g(ω) and g(ω′) arbitrarily and independently our con-
straint ends up implying Θ ≡ 0.

To ameliorate this we use parallel transport gω′→ω ∈ G between the two points along the
geodesic connecting them. Note that the representation of parallel transport ρ(gω′→ω) is an
n× n rotation matrix that rotates the vector during transport. We can thus define

(x ∗Θ)(ω) =

∫
Ω

Θ(ω, ω′)ρ(gω′→ω)x(ω
′) dω′.

The transport group element under gauge transformation gω transforms as gω′→ω 7→ g−1
ω′ gω′→ωgω

and the vector field transforms as x(ω) 7→ ρ(gω)x(ω
′). If the filter Θ commutes with the

structure group representations: Θ(ω, ω′)ρ(gω) = ρ(gω)Θ(ω, ω′) then x ∗ Θ is a gauge-
equivariant convolution which under gauge transformation gω transforms as:

(x′ ∗Θ)(ω) = ρ−1(gω)(x ∗Θ)(ω).

3.6 Meshes

Having gone through our 5 Gs we now discuss the M: meshes, which are somewhere in
between graphs and manifolds, and geometric graphs which are graphs that can be geomet-
rically realized. The additional structure on meshes allows us to, unlike standard graphs,
treat them as if they were continuous. A standard approach of approximating 3-dimensional
objects is with 2-manifolds. In turn, these 2-manifolds are often approximated via a discreti-
sation into a triangular mesh (built by gluing triangles together along edges). See Figure 3.2
(Page 61 of Bronstein et al. [1]) for a visual.

We can define a mesh as an undirected graph with additional triangular face structure:
T = (V , E ,F) where we have triangular faces given by

F = {(u, v, w) : u, v, w ∈ V and (u, v), (u,w), (w, v) ∈ E}.

Note that the orientation of a face is given by the order of the vertices. We additionally
assume that each edge in E is shared by exactly two triangles. This condition makes vertex
neighborhoods disk-like rendering the mesh into a discrete manifold (or manifold mesh). If
we consider the vertex features x1,x2, ...,xn we can define a metric on the mesh given by the
Euclidean norm: ℓuv = ∥xu−xv∥. Analogously to the case of Riemannian manifolds, we call
any property expressed solely using ℓ an intrinsic property and ℓ-preserving deformations
are again isometries.

45

Figure 3.2: Triangular Mesh Building Blocks; Manifold (Top) and non-Manifold (Bottom)

3.6.1 Laplacian Matrices

Our vertex features represent vertex geometry as well as data-relevant properties. As we
did with graphs we can stack our features into an n × d matrix X. We consider spectral
convolution on meshes by discretising the Laplacian operator:

(∆X)u =
∑
v∈Nu

wuv(xu − xv).

Alternatively, letting du =
∑

v wuv andD = diag(d1, d2, ..., dn) we can write∆ = D−W .We
note that we can write (∆X)u = duxu −

∑
v∈Nu

wuvxv and in the sum we see permutation-
invariant aggregation of the neighbor features of u. This implies that F (X) = ∆X is
permutation-equivariant.

If we let W = A where A is the adjacency matrix of the graph G = (V , E) then we see
that we have a Laplacian construction for an arbitrary graph. In particular, we have not
used the added mesh structure. For example, if G is a geometric graph with vertices having
spatial coordinates then it is common to have weights inversely dependent on the metric
such as wuv ∝ e−ℓuv .

For a mesh we can use the added structure of the faces with the cotangent formula [34, 35]:

wuv =
cot∠uqv + cot∠upv

2au
,

where the angles ∠uqv and ∠upv correspond to the angles in the triangles (u, q, v) and (u, p, v),
respectively, opposite their shared edge (u, v) and where au is the local area computed as

46

the area of the polygon given by the barycenters of triangles (u, p, q) containing u:

au =
1

3

∑
p,q:(u,p,q)∈F

aupq, aupq the area of triangle (u, p, q).

See Figure 3.3 (Page 62 of Bronstein et al. [1]) for a visual of the geometry behind the
cotangent formula.

Wardetzky et al. [36, 37] prove various properties of the cotangent Laplacian ∆:

1. It is positive semi-definite with eigenvalues λn ≥ ... ≥ λ1 ≥ 0.

2. It is symmetric implying it has orthogonal eigenvectors.

3. It is local in the sense that (∆X)u depends only on Nu.

4. It converges to the continuous ∆ for an infinitely refined (granular) mesh.

Furthermore, the cotangent Laplacian is intrinsic (giving the incredibly desirable isometry
invariance property) since we can write

wuv =
−ℓ2uv + ℓ2vq + ℓ2uq

8auvq
+

−ℓ2uv + ℓ2vp + ℓ2up
8auvp

with aijk the area of triangle (i, j, k) given by Heron’s semiperimeter formula:

aijk =
√
sijk(sijk − ℓij)(sijk − ℓik)(sijk − ℓjk), sijk =

1

2
(ℓij + ℓik + ℓjk).

Figure 3.3: Geometry behind the Cotangent Formula

47

3.6.2 Spectral Convolution on Meshes

We diagonalize the Laplacian matrix as ∆ = ΦΛΦT with Φ = (φ1,φ2, ...,φn) and Λ =
diag(λ1, λ2, ..., λn) where the λi’s and φi’s are the eigenvalues and eigenvectors of the Lapla-
cian matrix. We can thus define spectral convolution with a filter θ on the mesh as

X ∗ θ = Φ · diag(ΦTθ)(ϕTX) = Φ · diag(θ̂)X̂.

The problem with this definition is similar to the problem with our initial definition of spec-
tral convolution of manifolds due to the sensitivity of the Fourier transform to perturbations.
We modify our definition again using transfer functions:

p̂(∆)X = Φ · p̂(Λ)ΦTX = Φ · diag(p̂(λ1), p̂(λ2), ..., p̂(λn))X̂.

We note that we can again write our transfer function as a polynomial:

p̂(∆)X =
ℓ∑

k=0

αk∆
kX,

as was done in [38].

3.6.3 Functional Maps

A functional map [39] is a correspondence between functions on two domains. Specifically,
it is a linear operator C : X (Ω) → X (Ω′) that can be represented by an n′ × n matrix
such that x′ = Cx for x ∈ X (Ω) and x ∈ X (Ω′) For C to preserve area it is necessarily
orthogonal [40] so we have C ∈ O(n) =⇒ C−1 = CT. We will use functional maps to think
of meshes as operators, allowing for invariances that exploit the mesh structure. Let T be a
mesh with vertex coordinates X. The Laplacian is an intrinsic operator representing a mesh
and from which we can recover the mesh up to isometry [41]. There are other operators that
can represent the mesh [42, 43, 44] and as a result we choose to represent our mesh with a
general operator Q(T ,X), which is an n × n matrix. Instead of writing functions on the
mesh as f(T ,X) we will write f(Q). See Figure 3.4 (Page 67, Figure 13 of Bronstein et
al. [1]) for a visual representation of the motivation for functional maps.

Note that the vertices of a mesh are unordered, as is the case for graphs and sets. We
thus are interested in permutation-invariant or permutation-equivariant functions, that is
functions such that for any permutation matrix P we have:

f(PQP T) = f(Q) (invariance), F (PQP T) = PF (Q) (equivariance).

Meshes have additional structure though given that they are discretisations of continuous
surfaces. Suppose then that T is a discretization of a domain Ω. We could consider another
mesh T ′ with n′ vertices and coordinates X ′ that also discretizes Ω. We call this use of an-
other mesh remeshing. Note that permutation does not necessarily provide a correspondence

48

Figure 3.4: (Left) Pointwise Map of Cat/Dog Cells vs. (Right) Functional Map of Cat/Dog
Shared Limb

between these meshes given that they not only have potentially distinct structure but they
need not even have the same number of vertices.

This is where the functional map comes in. Suppose Q and Q′ are operator representa-
tions of T and T ′, respectively, and that C is a correspondence (functional map) between
T and T ′. Then we have:

Q′ = CQCT, Q = CTQ′C.

This gives rise to the notions of remeshing invariance and equivariance, that is functions
such that for any C ∈ O(n):

f(Q′) = f(CQCT) = f(Q) (invariance), F (Q′) = F (CQCT) = CF (Q) (equivariance).

Note that permutation is a special case of a trivial remeshing that simply reorders the un-
ordered vertices of a mesh.

Having now explored the geometric domains we move on to applications of the theory.
In the next chapter, we apply the theory and blueprint framework we have developed to
different neural network architectures and in the final chapter, we will investigate a variety
of practical applications of geometric deep learning.

49

Chapter 4

Geometric Deep Learning Models

After introducing the geometric deep learning blueprint (Definition 15) and investigating it
in the context of different geometric domains, we are ready to study contemporary neural
network architectures. We will aim to apply geometric deep learning to the current deep
learning landscape in substantial breadth but certainly not in an exhaustive manner. That
being said, we will look at three classes of models in particular, all of which we briefly dis-
cussed in Chapter 1.

The first architecture we look at is the convolutional neural network (CNN). The vanilla
CNN’s construction follows rather immediately from the blueprint and furthermore we will
consider group-equivariant CNNs as well as CNNs on meshes.

The next architecture, whose construction also follows from the blueprint fairly easily,
is the graph neural network (GNN). We will show the substantial expressive power of the
GNN by introducing equivariances and we will also show that the popular transformer ar-
chitecture [16] (which is the state-of-the-art in many tasks today) is in fact a GNN.

Finally, by considering a grid temporally we can study recurrent neural networks (RNNs)
and show a sort-of temporal translation invariance. We will also discuss RNN pathologies
that motivate models such as the Long Short-Term Memory (LSTM) [45, 46].

4.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are, unsurprisingly, reliant on convolution. Consider
a finite grid (such as an image) Ω = [H]× [W] (with [n] = {1, 2, ..., n}) and ω = (ω1, ω2) ∈ Ω.
We consider scalar functions x ∈ X (Ω,R). Convolving with a filter θ of dimensions Hf×W f

is a linear combination of filter generators {θij : i ∈ [Hf], j ∈ [W f]} (see Figure 4.1 (Page 69,
Figure 14 of Bronstein et al. [1])). Now using the fact that local linear translation-equivariant
maps are convolutions (from Chapter 3) we can write any local linear equivariant function

50

in the following form:

F (x) =
Hf∑
i=1

W f∑
j=1

αijC(θij)x.

If we use the standard θij(ω1, ω2) = δ(ω1 − i, ω2 − j) then the above expression coincides
with 2-dimensional convolution, that is:

F (x)uv =
Hf∑
i=1

W f∑
j=1

αijxu+i,v+j.

Figure 4.1: Convolution of x with Filter C(θ) = C(θ11 + θ13 + θ22 + θ31 + θ33)

We use a convolutional tensor for an input with M channels (for example, RGB images
with M = 3) and an output with N channels:

F (x)ℓuv =
Hf∑
i=1

W f∑
j=1

M∑
k=1

αℓijkxu+i,v+j,k, j ∈ [N].

Between convolutional layers, a non-linear activation function σ : X (Ω) → X (Ω) is ap-
plied element-wise (σ(x))(ω) = σ(x(ω)). This step is key to the model’s expressive power
(for neural networks in general). The most common example of such a function is the recti-
fied linear unit or ReLU (discussed in Chapter 1): σ(x) = max(0, x).

Coarsening is applied after convolutional layers as well. This is done via a coarsening
operator P : X (Ω) → X (Ω′) with Ω′ coarser than Ω. The use of P as notation is a reference
to pooling, which is the coarsening of choice for convolution. Pooling generally involves look-
ing at sub-grids of the larger grid input and aggregating convolved features in said sub-grid
together (via an average or a maximum, for example).

51

We thus see that this vanilla CNN architecture falls in line with our blueprint since we can
write such a model as the composition of a coarsening operation P , a non-linear activation
σ, and an equivariant linear layer F :

P (σ(F (x)) (GDL blueprint expression of vanilla CNN)

CNNs have had substantial impact on the field of machine learning but not without a
series of innovations that made them feasible. We explore these innovations next.

A deep CNN of depth n is a model with n convolutional layers. The convolution com-
ponent of such a model is specified by hyperparameters of the form {(Hf

k ,W
f
k ,Mk, Nk, pk) :

k ∈ [n]}, where the filter of the kth layer is of dimension Hf
K ×W f

k , Mk and Nk indicate the
input and output dimensions at layer k (necessitatingMk+1 = Nk), and pk ∈ {0, 1} indicates
the presence of pooling. A slight modification of this architecture known as a residual CNN
(more generally a residual network or ResNet) [47] enabled more favorable optimization of
deep CNNs. This architecture relies on a skip-connection by including the input into the
pooling operation:

P (x+ σ(F (x)) (GDL blueprint expression of residual CNN).

Two techniques used for CNNs but for neural networks in general are batch normaliza-
tion [48] and data augmentation [49]. Batch normalization layers estimate the first and
second moments of a layer xk to estimate the layer’s mean µk and standard deviation σk.
These estimates are then used to normalize the layer via:

x′
k = σ−1

k ⊙ (xk − µk),

where ⊙ indicates element-wise multiplication.

Data augmentation involves transforming the data in a way that preserves its meaning.
An example would be rotating an image or changing that image’s brightness. Even adding
random noise to data can be useful. This technique helps prevent overfitting and has been
successful in improving model generalization. Data augmentation, however, has sub-optimal
sample complexity [50] and a better approach, as we will see next, involves using invariances
and equivariances.

4.1.1 Group-Equivariance

In Chapter 3, we considered the action of a group G on a (homogeneous space) domain Ω
and defined a corresponding group convolution. We now discuss this idea in more practical
terms, first with examples of situations in which group convolutions can be useful.

We will start with discrete Ω and G. Let Ω = Z3 be a 3-dimensional grid and take
x ∈ X (Ω,R) (corresponding to medical images such as MRIs perhaps). In practice, we

52

should use a finite 3-D grid [W]× [H]× [D] ⊂ Z3 but in principle we can use an infinite grid
Z3 with padding. Our symmetry group will consist of transformations on Z3 that preserve
distance and orientation (i.e. translations and right-angle rotations): G = Z3 ⋊ Oh, where
⋊ indicates a semi-direct product.

Another example is DNA sequences. DNA consists of sequences of four nucleotides
represented by the letters A, T, C, and G. Computationally, they are represented using the
one-hot encoding where each nucleotide is mapped to a vector ei for i ∈ [4] that consists
of all zeroes except for a 1 at the ith index. We can thus think of a DNA sequence as a
function f : Z → R4 (really we could think of it as a map [L] → Z4). DNA sequences
have reverse-complement symmetry. They are double-stranded with a 5’-end and a 3’-end
(note that DNA sequences are read from 5’ to 3’). Between strands the nucleotides A and
T are always paired and C and G are always paired. The sequence (5’)ATGCTGCAA(3’)
is thus equivalent to (3’)TACGACGTT(5’). Correspondingly, our symmetry group is Z2

with the non-identity transformation being a reverse-complementation (there is additionally
translation invariance to consider since we are on a grid but this is not specific to the case
of DNA). See Figure 4.2 (Page 75 of Bronstein et al. [1]) for a visual.

Figure 4.2: Idealized DNA Double-Helix

Since we have discrete symmetry groups, the group convolution between x ∈ X (Ω,R)
and a filter θ is

(x ∗ θ)(g) =
∑
ω∈Ω

xωρ(g)θω =
∑
ω∈Ω

xωθg−1ω.

There still is the question of how to implement a group convolution in a way that is
tractable and on the same (or similar) order of computation as regular convolution (and in
general, deep learning methods), for which optimized hardware such as GPUs exist. Note
that our discrete transformations consist of translations and another transformation (rotation
for 3-D images, reverse-complementation for DNA). Thus if we take a transformation g ∈ G
we can write g = lh for l ∈ Zd a translation and g ∈ H the other appropriate transformation.
Using the fact that ρ(g) = ρ(lg) = ρ(l)ρ(h) we can write the convolution as:

(x ∗ θ)(g) = (x ∗ θ)(lh) =
∑
ω∈Ω

xωρ(lh)θω

=
∑
ω∈Ω

xωρ(l)ρ(h)θω =
∑
ω∈Ω

xω(ρ(h)θ)ω−l = (x ∗ (ρ(h)θ))(l).

53

The translation component of the convolution can be implemented identically to classical
convolution. To complete the implementation we can pre-compute and store the transformed
filters θh = ρ(h)θ for all h ∈ H and then by accessing these transformed filters we can com-
pute the convolution (f ∗ (ρ(h)θ))(l) = (f ∗ θh)(l) in the same way (up to accessing and
storing the transformed filters) as regular convolution.

We have defined the group convolution as a function of G but the fact that we can write
elements of G using translations and elements of H motivates us to stack maps into orien-
tation channels. We will have one map for each combination of filter transformation (there
are |H|-many) and each orientation l. We store these maps using a W ×H × C array with
C the number of channels (which is the product of the number of distinct filters and the
number of non-translation filter transformations h ∈ H). The channels give an interpretation
of the group-equivariance property: (ρ(g)x) ∗ θ = ρ(g)(x ∗ θ). The group transformation on
the convolution transforms the orientation channels via permutation. This gives an analogy
between the group-equivariant CNN architecture and the vanilla CNN, which suggests we
can extend CNN variant architectures such as residual networks to group-equivariant CNNs.

We can define CNNs on continuous domains and symmetry groups as well. Take for
example spherical CNNs [51] defined on Ω = S2 and G = SO(3).We must define the Fourier
transform on both spaces since convolution on S2 is a function of SO(3). The Fourier basis
on S2 consists of spherical harmonics while the Wigner D-functions form the Fourier basis
of SO(3). The Fourier transform is defined analogously to the classical transform via inner
products with the Fourier basis functions and furthermore a similar result to the convolution
theorem holds. Lastly, it is worth noting that there exist fast Fourier transform analogs for
efficient computation of these Fourier transforms.

4.1.2 Meshes

As we have seen, meshes are very important in computer vision as they can be used to
discretize 3-dimensional objects. Convolution on meshes is usually defined using the ex-
ponential map and writing the filter in coordinate form on the tangent space. Consider a
geodesic γ on our domain Ω such that ω = γ(0) and ω′ = γ(T) (note that on a discrete mesh
a geodesic is a poly-line on the triangular faces of the mess). We can define geodesic polar
coordinates (r(ω, ω′), ϑ(ω, ω′)) where r(ω, ω′) = ℓ(γ) is the geodesic distance between ω and
ω′ and ϑ(ω, ω′) is the angle between γ′(0) and a local reference direction. We use this polar
frame to define a geodesic patch: x(ω, r, ϑ) = x(expωpω(r, ϑ)) with pω : [0, R]× [0, 2π) → TωΩ
the local polar frame (R is the injectivity radius). See Figure 4.3 (Page 86 of Bronstein et
al. [1]) for a visual of geodesic patches. We now look at potential approaches to define
geodesic CNNs.

Note that in our definition of geodesic patch we can choose orientation and direction
arbitrarily and this is done in a non-invariant manner (i.e. x(ω, r, ϑ + ϑ0) can differ from

54

Figure 4.3: Geodesic Patches on Mesh Discretization of Human Body

x(ω, r, ϑ)). One workaround for this would be to use isotropic filters θ:

(x ∗ θ)(ω) =
∫ R

0

∫ 2π

0

x(u, r, ϑ)θ(r) dr dθ.

This is analogous to spectral convolution (since the Laplacian is isotropic). As a consequence
of isotropicity, this definition will disregard directionality and potentially lose information.

Masci et al. [52] use a technique called angular max pooling to construct a geodesic
CNN. This involves a non-isotropic (anisotropic) filter θ(r, ϑ) aggregated and maximized
over rotations:

(x ∗ θ)(ω) = max
ϑ0∈[0,2π)

∫ R

0

∫ 2π

0

x(u, r, ϑ)θ(r, ϑ+ ϑ0) dr dϑ.

We now discretize this definition using patch operators where for a vertex u we weigh the
polar frame (ruv, ϑuv) using functions on the polar coordinates w1, w2, ..., wK and learnable
filter coefficients θ1, θ2, ..., θK . We defer additional details to Masci et al.

The two approaches we have seen so far are gauge-invariant if we consider the gauge
transformations g ∈ SO(2) as coordinate frame rotations. We now look at another ap-
proach [53, 54] that is gauge-equivariant. We must use parallel transport for our construction
to map geometric features to the same vector space before convolving with the filter. We
use a message-passing mechanism on the mesh that computes vector “messages” between
each pair of mesh vertices (message-passing will be further explained in our section on graph
neural networks). Take input features xu ∈ Rd at vertex u expressed relative to some choice
of gauge at u. We assume the features transform via action by ρin, a representation of
G = SO(2). The output hu ∈ Rd′ of the convolution acts according to a representation ρout.

We define gauge-equivariant convolutions on a mesh using message-passing as:

hu = Θself · xu +
∑
v∈Nu

Θneigh(ϑuv)ρ(gv→u)xv,

55

where we have learnable filters Θself,Θneigh(φuv) ∈ Rd′×d. Note that Θneigh(φuv) depends on
φuv, the angle of v to the reference direction at u, which implies anisotropicity. The element
gv→u ∈ SO(2) corresponds to parallel transport from v to u (expressed relative to gauges
at the vertices). The group action of this element has representation given by a transporter
matrix ρ(gv→u) ∈ Rd×d. For implementation purposes, we can pre-compute these transport
elements and their representations for all vertices.

We can further parameterize the filters using gauge transformation properties:

h(ω) 7→ ρout(g
−1(ω))h(ω) =⇒ ∀ϑ ∈ SO(2)

Θself · ρin(ϑ) = ρout(ϑ)Θself and Θneigh(ϑuv − ϑ)ρin(ϑ) = ρout(ϑ)Θself.

These are linear constraints implying a parameterization of the filters using basis filters and
learnable coefficients of the form:

Θself =
∑
i

αiΘ
i
self, Θneigh =

∑
j

βjΘ
j
neigh.

4.2 Graph Neural Networks

Graph neural networks (GNNs) are designed to model graphical data and thus possess in-
variances and equivariances to permutations, but they are in fact more general and, as we
will see, they can express many other neural network architectures. We model a graph as
an adjacency matrix A and a matrix of node features X. As per the blueprint, we will con-
sider GNN architectures F (X,A) that are permutation-equivariant, which we will construct
using permutation-invariant functions ϕ(xu,XNu) about vertices and their local neighbor-
hoods. We can refer to the function ϕ as performing propagation or message passing and
the function F as a GNN layer. We will now characterize three kinds of GNNs layers based
on the function ϕ, which can be visualized in Figure 4.4 (Page 78, Figure 17 of Bronstein et
al. [1]).

Figure 4.4: Visual Represenation of GNN Dataflows: (Left) Convolutional GNN with fixed
weights cuv between nodes (Middle) Attentional GNN with weights computed via attention
mechanism as αuv = a(xu,xv) between vertices (Right) Message-Passing GNN with mes-
sages muv = ψ(xu,xv) computed between vertices

56

Each different kind of GNN will satisfy permutation invariance by applying an updating
function ϕ to an aggregation of vertex features from XNu (transformed by some ψ) via a
permutation-invariant function

⊕
. The function

⊕
is generally nonparameteric such as

a sum or a maximum, while ϕ and ψ are learnable. A generic example would be to use
fully-connected layers with learnable weight matrices W ,U , b and non-linear activation σ:

ψ(x) = Wx+ b, ϕ(x, z) = σ(Wx+Uz + b).

The first kind of GNNs are convolutional GNNs [55, 56, 57] which aggregate neighborhood
vertices using fixed weights:

hu = ϕ

(
xu,

⊕
v∈Nu

cuvψ(xv)

)
.

Note that the weights cuv correspond to the impact of vertex v on vertex u’s representation
and that we are summing over individual neighbor vertex (transformed) features ψ(xv).

Next we have attentional GNNs [58, 59, 60] which use a learnable self-attention mecha-
nism a used to compute weights a(xu,xv):

hu = ϕ

(
xu,

⊕
v∈Nu

a(xu,xv)ψ(xv)

)
.

The weights αuv tend to be normalized using softmax (in this case across vertex neighbors).
Also, note again that we are summing over individual neighbor vertex (transformed) features.

Lastly, we have message-passing GNNs [10, 61] which compute arbitrary functions (“mes-
sages”) across graph edges:

hu = ϕ

(
xu,

⊕
v∈Nu

ψ(xu,xv)

)
.

In this context, ψ is a learnable function that computes a message vector sent from vertex v
to u.

We observe that convolutional GNNs can be expressed using attentional GNNs and both
convolutional and attentional GNNs can be expressed using message-passing GNNs. To see
this, we note that the attention mechanism a(xu,xv) = cuv for some fixed weights proves
the initial claim and the message passing functions ψ(xu,xv) = cuvψ(xv) (for convolutional
GNNs) and ψ(xu,xv) = a(xu,xv)ψ(xv) (for attentional GNNs) proves the latter statement.
While this implies that message-passing GNNs have the most expressive power (and atten-
tional GNNS are more powerful than convolutional GNNs) it is important to note that their
power also comes with increased complexity and computational expense to train. As such,
we should choose our GNN architecture according to our problem so as to not be wasteful.

57

4.2.1 Transformers (and more)

We now consider GNNs on unordered sets, motivated by their permutation symmetry prop-
erties. Specifically, we will show that GNNs can express the popular transformer [16] model
as well as deep sets [62]. We will again consider a matrix of vertex features X, but we will
not assume edge structure on the graph.

We first assume an empty edge set, that is A = 1. In this case we have trivial neighbor-
hoods Nu = {u} for all u ∈ V (note the choice to include u ∈ Nu) resulting in a GNN model
of the form:

hu = ψ(xu),

with ψ a learnable function. This model is equivalent to the deep sets model.

On the flip side, we can consider the case of a complete edge set. This is useful if we
do not have information regarding the graph structure and is equivalent to A = 11T and
Nu = V for all u ∈ V . Note that convolutional GNNs in this context are of the form:

hu = ϕ

(
xu,
⊕
v∈V

ψ(xv)

)
.

Since the vertex aggregation term
⊕

v∈V ψ(xv) is the same for all vertices, graph convolution,
in this case, is equivalent to the A = 1 case. We instead consider an attentional GNN:

hu = ϕ

(
xu,
⊕
v∈V

a(xu,xv)ψ(xv)

)
.

This is the self-attention that is key to the transformer architecture. If we normalize the
attention coefficients using softmax for example then we have coefficients αuv = a(xu,xv)
such that αuv ∈ [0, 1], creating a soft adjacency matrix α with rows summing to 1. We
can thus model a transformer using an attentional GNN over a complete graph [63]. We
only need to note that transformers model sequential data and so we must use positional
encodings (already a component of the transformer), which are transformations of a vertex
u’s features xu used to keep track of a vertex’s position in the sequence. When dealing with
general graph structures the graph Laplacian’s eigenvectors can be used instead of positional
encoding, as was done in the graph transformer [64].

We note that the empty edge set case A = 1 is not sufficiently expressive while the com-
plete edge set case A = 11T is potentially too expressive and is computationally expensive.
In general, we seek to infer the edge sets of a graph, which is the challenging task of latent
graph inference.

4.2.2 Equivariant Message-Passing

Consider the case where our vertex features include positional coordinates, an example being
molecular graphs for which the vertices are atoms containing 3-dimensional spatial coordi-

58

nates. Molecules are structurally equivariant to rigid transformations and thus we want our
model of these molecular graphs to be SE(3)-equivariant (where SE(3) is the special Eu-
clidean group consisting of rotations and translations).

To study this context, we will split our vertex features into (non-spatial coordinate) fea-
tures fu ∈ Rd and spatial coordinates xu ∈ R3 and we will assume our model transforms
these into f ′

u and x′
u, respectively. Given g ∈ SE(3) the group action is ρ(g)x = Rx + t

where R ∈ R3×3 is a rotation matrix and t ∈ R3 is a translation. We assume that the vertex
features are invariant to this action (i.e. f ′

u 7→ f ′
u) while the spatial coordinates are assumed

to be equivariant (i.e. x′
u 7→ Rx′

u + t).

There is still the question of how to construct such an equivariant model. We will present
a construction of E(n)-equivariant message-passing GNNs from Satorras et al. [65] (where
E(n) is the Euclidean group consisting of rotations, reflections, and translations). The model
acts separately on vertex features and spatial coordinates:

f ′
u = ϕ

(
fu,

⊕
v∈Nu

ψf
(
fu,fv, ∥xu − xv∥2

))
,

x′
u = xu +

∑
v∈V\{u}

(xu − xv)ψx
(
fu,fv, ∥xu − xv∥2

)
,

with distinct learnable functions ψf and ψx. The desired invariance and equivariance prop-
erties follow from construction. The only dependence of f ′

u on the spatial coordinates is
through the norm ∥xu − xv∥, which is invariant to E(n), while x′

u depends on the norm
∥xu−xv∥ (invariant) and depends linearly on the spatial coordinates, which are equivariant
to E(n), implying the equivariance of x′

u. Note that we have assumed the vertex features fu
are invariant to the transformation, but it might be the case that they should be equivariant
(or that some of the features should be equivariant), an example being directional vectors.
We can address this by separating the invariant and equivariant components and defining
model updates accordingly.

4.3 Recurrent Neural Networks

We have primarily looked at domains modeling spatial data and have neglected sequential
data such as time series, language, or videos. For sequential data we will consider time-step-
based domains Ω(t), but in general we assume Ω(t) = Ω for some domain Ω and for all t. We
consider functions on these domains X(t) ∈ X (Ω(t)). The inputs X(t) may have non-trivial
symmetries that we can exploit with geometric deep learning. For example, videos consist
of frames on a fixed grid and medical scans consist of activations on a mesh that represents
(parts of) the human body. More specifically, suppose we want to encode our input with
a function f(X(t)). We consider videos as an input and so we have X(t) ∈ Rn×d where n

59

is the number of pixels in the frame and d is the number of channels (3 channels for RBG,
for example). In this case, one option is to let f be a translation-invariant CNN that at
time-step t outputs z(t) = f(X(t)) ∈ Rk.

We still need to aggregate information across time-steps to properly model z(t). We will
do this using recurrent neural networks (RNNs) and, furthermore, we will show a special
temporal translation symmetry property.

Figure 4.5: Vanilla RNN Architecture: Frames X(t) Encoded to z(t) = f(X(t)) and Hidden
States Updated via h(t) = R(z(t),h(t−1)).

We presented the vanilla RNN in Chapter 1 and will do so again. See Figure 4.5 (Page 91,
Figure 19 of Bronstein et al. [1]) for a visual of the architecture. This architecture computes
m-dimensional hidden states h(t) ∈ Rm via an update function R : Rk × Rm → Rm:

h(t) = R(z(t),h(t−1)).

A standard approach is to update the hidden states with a fully-connected layer, that is:

h(t) = σ(Wz(t) +Uh(t−1) + b),

where σ is a non-linear activation function such as ReLU and W ∈ Rk×m, U ∈ Rm×m, and
b ∈ Rm are learnable weights. Note that RNNs are trained using backpropagation through

60

time, which unrolls the computation graph of the network.

The hidden states h(t) are a vector representation summing the available information
at time-step t. These can be used in downstream tasks for prediction. Generally, we use
h(T) where T is the final time-step. The initial hidden state h(0) can be made learnable but
it must be initialized (usually either to 0 or randomly initialized). The value of h(0) is of
particular interest to an RNN’s translation equivariance, which we now explore.

The components of the RNN consist of discrete time-steps on a one-dimensional grid. We
at first naively attempt to show an equivariance to the left-shift of the form z′(t) = z(t+1).
For this equivariance to hold we require h′(t) = h(t+1) but this does not hold in general. Note
that for t = 1 we have

h′(1) = R(z′(1),h(0)) = R(z(2),h(0))

and
h(2) = R(z(t),h(1)) = R(z(2), R(z(1),h(0))).

Thus
h′(1) = h(2) =⇒ h(0) = R(z(1),h(0)),

which is not true in general. Note that this is one of many constraints, the rest would be
derived by looking at t > 1.

With the naive approach we ran into issues with boundary conditions. We can instead
consider a t′-translated and left-padded state (with t′ ≥ 1):

z∗(t) =

{
0 t ≤ t′

z(t−t′) t > t′
.

Letting z′(t) = z∗(t+1) we have

h′(1) = R(z′(1), h(0)) = R(z∗(2), h(0))

and
h(2) = R(z∗(2),h(1)) = R(z∗(1),h(0)) = R(z∗(2), R(0,h(0))).

We thus have the desired equivariance: h′(t) = h(t+1) if h(0) = R(0,h(0)). This means
h(0) must be a fixed point of the function γ(h) = R(0,h). For appropriately chosen
R we can guarantee the existence of such a h(0). Moreover, if γ is a contraction (i.e.
∥γ(x) − γ(y)∥ ≤ r∥x − y∥ with r ∈ [0, 1)) then the iteration h0 = 0, hk+1 = γ(hk)
converges to a (unique) fixed point via the Banach fixed point theorem. We could continue
iterating until finding n such that hn = hn+1 at which point we set h(0) = hn.

It is worth noting certain pathologies with RNNs. Because of their sequential structure
they are, in a certain sense, always deep. There do exist deep RNNs though that consist

61

of multiple RNN layers composed with each other. RNNs face the vanishing gradient and
exploding gradient problems. What this means for the former problem is that components
of the gradient that have magnitude significantly less than 1 accumulate and multiplication
of these components leads to an approximately 0 (vanished) gradient. On the other hand,
too large gradient components (with magnitude greater than 1) can accumulate leading to a
very large (exploding) gradient. Dealing with these challenges has lead to the use of gating
mechanisms in various RNN architectures, which we will explore next.

4.3.1 Long Short-Term Memory

RNNs today use gating mechanisms to maintain “memory” and “forget” things. There are
two popular architectures, the long short-term memory or LSTM [45] and the gated recurrent
unit (GRU) [66]. Here we will study a specific LSTM implementation [46].

LSTMs use a memory cell which at each time-step t computes a cell state c(t) ∈ Rm

based on the previous cell state c(t−1) as well as the previous hidden state h(t−1) and the
current encoded input z(t). The hidden state h(t) is computed using c(t). To compute the
cell state, we first compute candidate features with a fully-connected layer:

c′(t) = tanh(Wcz
(t) +Uch

(t−1) + bc),

where tanh(x) = e2x−1
e2x+1

is the hyperbolic tangent activation and Wc, Uc, and bc are learnable
weights.

Next we compute gating vectors using z(t) and h(t−1). Specifically, we compute an input
gate i(t), forget gate f (t), and output gate o(t) using a fully-connected layer and the logistic
sigmoid activation function σ(x) = 1

1+e−x :

i(t) = σ(Wiz
(t) +Uih

(t−1) + bi) ∈ [0, 1]m,

f (t) = σ(Wfz
(t) +Ufh

(t−1) + bf) ∈ [0, 1]m,

and
o(t) = σ(Woz

(t) +Uoh
(t−1) + bo) ∈ [0, 1]m,

where W∗,U∗, b∗ are all learnable parameters.

Finally, we update the cell state and hidden state via using element-wise multiplication
(indicated by ⊙):

c(t) = i(t) ⊙ c′(t) + f (t) ⊙ c(t−1)

h(t) = o(t) ⊙ tanh(c(t)).

Note that the input gate weights the candidate features, the forget gate weights the previous
cell state (i.e. what to remember/forget from the past), and the output gate is used to
update the hidden state. We could encode these update rules with an operator R and write

(h(t), c(t)) = R(z(t), (ht−1, c(t−1))).

62

LSTMs are effective at dealing with the vanishing gradients probably and they additionally
offer time-warping invariance [67], which we explore now.

Suppose we are applying an RNN to a continuous z(t) (analogous to our encoded input).
Let h(t) be a continuous analog to our hidden states h(t). A first-order Taylor approximation
gives:

h(t+ δ) ≈ h(t) + δ · dh(t)
dt

.

We consider δ = 1 for our discrete case and note that our RNN update function R is such
that

dh(t)

dt
= h(t+ 1)− h(t) = R(z(t+ 1), h(t))− h(t).

We want our model to be (approximately) invariant to the sampling of z(t) (in the time-
domain). Let τ : R+ → R+ be a time-warping map, that is an automorphism of time
that is differentiable and monotonically increasing (dτ

dt
> 0). We say a class of models is

time-warping invariant if for any model of that class and any time-warping map τ there
exists another model in the class that acts on the time-warped inputs identically to how the
original model acts on the un-warped inputs. The value of this invariance is that it implies
that a model class is able to model long-range dependencies (which can be thought of as
a time dilation). LSTMs (and more generally gated RNNs) satisfy this invariance, giving
theoretical justification for their success in modeling long-range dependencies.

Time-warping by τ maps our encoded input to z(τ(t)). To satisfy invariance, we want to
show that the hidden state is warped to h(τ(t)). We use a first-order Taylor series and the
chain rule to find:

d(h(τ(t)))

dτ(t)
= R(z(τ(t+ 1)), h(τ(t)))− h(τ(t)) (Taylor expansion)

d(h(τ(t)))

dt
=
d(h(τ(t)))

dτ(t)

dτ(t)

dt
=
dτ(t)

dt
(R(z(τ(t+ 1)), h(τ(t)))− h(τ(t))) (chain rule).

Note that we need the derivative of the time-warping relative to normal time dτ(t)
dt

. We can

estimate this with a learnable function Γ (such as a neural network): Γ(z(t+1), h(t)) ≈ dτ(t)
dt
.

For an RNN on the time-warped domain the encoded inputs z(t) and hidden states h(t),
correspond to z(τ(t)) and h(τ(t)), respectively. We again use a first-order Taylor expansion
to derive the necessary condition for invariance:

h(τ(t+ δ)) ≈ h(τ(t)) + δ · dh(τ(t))
dt

.

We set δ = 1 and discretize to find

h(t+1) = h(t) +
dτ(t)

dt

(
R(z(t+1),h(t))− h(t)

)
63

=
dτ(t)

dt
R(z(t+1),h(t)) +

(
1− dτ(t)

dt

)
h(t)

≈ Γ(z(t+1),h(t))R(z(t+1),h(t)) +
(
1− Γ(z(t+1),h(t))

)
h(t),

where we substitute Γ for dτ(t)
dt

. As a sanity check, note that for vanilla RNNs the term on

the right in the above expression is not present implying dτ(t)
dt

= 1 (i.e. τ = t), and so vanilla
RNNs are not time-warping invariant.

A few properties from our analysis motivate gated RNNs, in particular the LSTM. Note
that we require dτ(t)

dt
< 1 in our expression for h(t+1). This makes sense intuitively, since

otherwise the warping could be “too fast” and result in us missing a data point at some time
step in our discretization. We also require dτ(t)

dt
> 0 for monotonicity implying

dτ(t)

dt
∈ (0, 1) =⇒ Γ(z(t+1),h(t)) ∈ (0, 1).

For Γ to satisfy the above constraint we could define it using a fully-connected layer with
logistic sigmoid activation σ:

Γ(z(t+1),h(t)) = σ(WΓz
(t+1) +UΓh

(t) + bΓ),

with learnable weights WΓ,UΓ, bΓ. This matches the gating vector equations of the LSTM
precisely. In fact, the multidimensionality of the gating vectors for an LSTM allows for time-
warping invariance in multiple dimensions of h(t) (with potentially different time-warpings
in each dimension) [68].

Now that we have extensively developed the theory of geometric deep learning and applied
it to existing neural network architectures we will conclude this thesis with a chapter on
applications to real-world data and the broader field of machine learning.

64

Chapter 5

Applications

We conclude our foray into geometric deep learning by exploring its applications across nu-
merous fields. Our initial discussion will regard the success of machine learning as a whole
given that many of the most popular architectures, namely convolutional neural networks
(CNNs), transformers, and graph neural networks (GNNs), are geometric deep learning mod-
els. We then explore practical applications in a diverse array of fields by summarizing several
works in the literature and we include a high-level discussion of geometric deep learning in
AlphaFold [9], the breakthrough protein structure and folding model by DeepMind. The
curious reader is recommended to further investigate these works or related ones per their
interest.

5.1 Machine Learning

While machine learning has impacted a massive number of fields, we will focus on computer
vision (CV) and natural language processing (NLP), two fields in which it has been partic-
ularly successful in.

CNN models have revolutionized computer vision. This architecture has its humble be-
ginnings as early as 1989 with LeNet [7] but really took the stage in 2012 with AlexNet [69],
which in fact was a pivotal moment for deep learning as a whole. Since then the ResNet
[47] (residual CNN) and ConvNeXt [70] architectures, among others, have been introduced.
More recently, transformer architectures have been extended to images beginning with the
vision transformer (ViT) [71]. ViT models have achieved state-of-the-art on many image
tasks and are tied with CNNs. Some ViT architectures use convolution for enhanced re-
sults, an example being ConViT [72]. The generality of the transformer architecture is very
exciting and as a result and we are currently seeing an increased popularity in multi-modal
models such as VATT [73], which can learn using multiple kinds of data at the same time
(such as images + video + audio + text).

Prior to the advent of the transformer architecture, recurrent neural networks (RNNs)

65

were used in NLP, an example being the seq2seq (sequence-to-sequence) model [74]. These
models are no longer state-of-the-art though and are being replaced by transformers. In
particular, the bidirectional transformer model BERT [75] and GPT (generative pre-trained
transformer) [6] have had a major impact in the field. We have already mentioned GPT-3,
the state-of-the-art breaking massive 175 billion parameter language model by OpenAI, in
this work but it is worth mentioning again (and certainly worth further investigation by the
interested reader) given how game-changing it is.

It is important to note that CV and NLP are certainly not the only fields impacted by
deep learning, but for the sake of brevity we do not delve into many of these other fields
and instead opt to cover specific works that utilize geometric deep learning to a substantial
extent.

5.2 Biochemistry: Molecules and Proteins

Molecules and proteins rely heavily on geometric structure and offer prominent use cases for
geometric deep learning. For example, protein function is highly dependent on structure,
which is usually modeled as a 3-dimensional fold. Furthermore, both of these objects can im-
mediately be modeled as graphs with molecules, for example, consisting of atoms (vertices)
and bonds between atoms (edges). This representation of molecules via molecular graphs
allows for modeling them with GNNs and other geometric deep learning methods. The work
by Atz et al. [76] covers the application of many of the methods we have discussed in this
work, including GNNs, 3-D and Mesh CNNs, and transformers, to molecular representations.

Proteins and molecules are invariant to rotations and translations and can be invari-
ant to reflections (when properties such as chirality are not a concern). Naturally then,
we are particularly interested in model equivariance under SE(3) and E(3). Satorras et
al. [65] develop E(n)-equivariant GNNs and apply them to predicting molecular properties
and Batzner et al. [77] use these models for predicting interatomic potentials. Fuchs et al.
develop the SE(3)-transformer [78] and also apply them to molecular property modeling.
These techniques can be extended to protein-protein and protein-ligand interactions as well.
For example, EQUIDOCK [79] and EQUIBIND [80] use SE(3)-equivariance for protein dock-
ing and protein binding, respectively.

For more examples of relevant works, we refer the reader to [10, 81, 82, 83, 84, 85].

5.2.1 AlphaFold

DeepMind’s AlphaFold, which we have mentioned multiple times in this work already, is
a hallmark work of geometric deep learning and perhaps of deep learning itself given how
substantial of a scientific breakthrough it is. The model uses geometric techniques to model
protein structures and is able to predict protein folds with substantial accuracy.

66

The AlphaFold 2 model [9] introduced multiple innovations, many of which fit in the scope of
geometric deep learning. The model can be broken up into two components, the evoformer
and the structure module. The evoformer is a transformer architecture modified for using
evolutionary protein data. The attention mechanisms used in the evoformer are also designed
for geometric protein constraints, such as the triangle inequality. The structure module
incorporates SE(3)-invariance in order to make the entire model SE(3)-equivariant. This
is achieved by viewing each amino acid residue as a frame represented by a tuple Ti =
(Ri, ti) corresponding to the rotational and translational components of an element of SE(3)
(i.e. Ri ∈ R3×3, RT

i Ri = 1 = RiR
T
i , detRi = 1 and ti ∈ R3). They use a special

attention mechanism called invariant point attention that uses SE(3) coordinate frames to
achieve the desired invariance. See Figure 5.1 (“AlphaFold” - DeepMind) for a visual of
AlphaFold’s success in modeling protein structure. We could certainly go into much greater
detail regarding AlphaFold but for brevity we instead refer the curious reader to their paper
or to DeepMind’s blog post1.

Figure 5.1: Two Target Proteins Modeled by AlphaFold - GDT Metric is Global Distance
Test (Ranging from 0 to 100)

We also note that there has been great interest in the model in the literature with some
noting the importance of attention and symmetries (key to geometric deep learning) in Al-
phaFold [15]. AlphaFold has been combined with graph transformers to predict protein-DNA
binding [86]. DeepMind themselves have extended AlphaFold to predict protein multimer
folds [87]. It is exciting to think about what will come next after this game-changing inno-
vation.

1AlphaFold: a solution to a 50-year-old grand challenge in biology

67

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

5.3 Healthcare

Medicine offers many contexts in which geometric deep learning may be useful, including
modeling parts of the human body (such as organs) as meshes and working with patient
networks. CNNs, for example, can be used to diagnose diseases from retinal scans [88].
Furthermore, SE(3)-equivariant CNNs were found to outpeform vanilla CNNs on pulmonary
node detection [89]. Meshes can be used to model human faces and mesh CNNs can predict
faces from an individual’s genetic-related demographics [90]. Furthermore, graph convolu-
tional networks (GCNs) can be used with functional brain data (generally from an fMRI) [91]
or on patient networks [92] to diagnose brain disorders such as autism. For more examples
of relevant works, we refer the reader to [93, 94, 95].

5.4 Networks

Networks naturally have a graph structure suggesting that GNNs can be useful for dealing
with them. Pinterest’s PinSage model [96] enabled graph representation learning for graphs
with millions of nodes and billions of edges. This work was followed up with graph-based
recommender systems from the e-commerce companies Amazon [97] and Alibaba [98]. A
similar use case is with social networks, an example being the GNN-based misinformation
detection algorithm by Fabula AI [99] (acquired by Twitter).

Figure 5.2: Percentage Improvements in Google Maps ETAs with GNNs

Traffic networks can also be modeled using GNNs. DeepMind used GNNs for modeling
estimated times of arrival (ETAs) around the world [100]. This work has already been de-
ployed in Google Maps. Baidu has had similar success with their ConSTGAT model [101],
which is based on graph attention. See Figure 5.2 (“Traffic prediction with advanced Graph
Neural Networks” - DeepMind) for a visual of %-improvements of Google Maps ETAs from
using GNNs.

For more examples of relevant works, we refer the reader to [102, 103].

68

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

5.5 The Metaverse: Virtual and Augmented Reality

The term “metaverse” has been thrown around recently. It generally refers to a digital analog
of what we consider the real world [104] and is being realized via virtual and augmented
reality technologies. The value of geometry in this context is clear given that our world
is geometric and smooth (i.e. if you take two steps to the left and turn around you do so
continuously and you are still the same person). Lin et al. [105] develop sparse steerable
convolution (SS-Conv) using sparse tensors to perform SE(3)-equivariant convolution. They
apply their model to estimating object poses. The recently introduced FaceFormer [106] uses
a transformer architecture to estimate facial movements according to input speech, which
has the potential of making speech in the metaverse more realistic. Dundar et al. [107] use
mesh learning and a custom attention mechanism to estimate 3-dimensional representations
of objects from 2-D images. See Figure 5.3 (Figure 1 of Dundar et al. [107]) for examples
from their work. For more examples of relevant works we refer the reader to [108, 109, 110,
111, 112].

Figure 5.3: 3-D Representations of Cars from 2-D Images (using model from Dundar et
al. [107])

69

Bibliography

[1] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges,” 2021.

[2] F. Klein, “A comparative review of recent researches in geometry,” Bulletin of the
American Mathematical Society, vol. 2, pp. 215–249.

[3] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[4] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning. Cambridge,
England: Cambridge University Press, May 2014.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in
Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, eds.), vol. 33, pp. 1877–1901, Curran Associates, Inc., 2020.

[7] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, pp. 484–489, Jan. 2016.

[9] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A.
Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler,
T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,

70

http://www.deeplearningbook.org
http://www.deeplearningbook.org

P. Kohli, and D. Hassabis, “Highly accurate protein structure prediction with Al-
phaFold,” Nature, vol. 596, pp. 583–589, July 2021.

[10] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” in Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, p. 1263–1272, JMLR.org, 2017.

[11] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature
Physics, vol. 15, pp. 1273–1278, Aug. 2019.

[12] A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tan-
burn, P. Battaglia, C. Blundell, A. Juhász, M. Lackenby, G. Williamson, D. Hassabis,
and P. Kohli, “Advancing mathematics by guiding human intuition with AI,” Nature,
vol. 600, pp. 70–74, Dec. 2021.

[13] “Pitchbook data shows surge of ai investment in 2021 - protocol.” https://www.

protocol.com/enterprise/ai-startup-funding-2021.

[14] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson, Molecular Biology
of the Cell. Garland, 4th ed., 2002.

[15] N. Bouatta, P. Sorger, and M. AlQuraishi, “Protein structure prediction by Al-
phaFold2: are attention and symmetries all you need?,” Acta Crystallographica Section
D Structural Biology, vol. 77, pp. 982–991, July 2021.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[17] A. Shanehsazzadeh, D. Belanger, and D. Dohan, “Is transfer learning necessary for
protein landscape prediction?,” 2020.

[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discov-
ering clusters in large spatial databases with noise,” in Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining, KDD’96, p. 226–231,
AAAI Press, 1996.

[19] A. M. TURING, “I.—COMPUTING MACHINERY AND INTELLIGENCE,” Mind,
vol. LIX, pp. 433–460, 10 1950.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT
Press, second ed., 2018.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing atari with deep reinforcement learning,” ArXiv,
vol. abs/1312.5602, 2013.

71

https://www.protocol.com/enterprise/ai-startup-funding-2021
https://www.protocol.com/enterprise/ai-startup-funding-2021

[22] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver, “Mastering atari,
go, chess and shogi by planning with a learned model,” Nature, vol. 588, pp. 604–609,
Dec. 2020.

[23] S. Park, C. Yun, J. Lee, and J. Shin, “Minimum width for universal approximation,”
in International Conference on Learning Representations, 2021.

[24] M. Marchetti-Bowick, “Lecture notes on optimization (cmu 10-725),” Fall 2013.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2015.

[26] T. Bepler and B. Berger, “Learning protein sequence embeddings using information
from structure,” 2019.

[27] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–
80, 2009.

[28] S. Mallat, “Group invariant scattering,” Communications on Pure and Applied Math-
ematics, vol. 65, no. 10, pp. 1331–1398, 2012.

[29] B. Bamieh, “Discovering transforms: A tutorial on circulant matrices, circular convo-
lution, and the discrete fourier transform,” 2018.

[30] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE
Transactions on Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[31] J. Nash, “The imbedding problem for riemannian manifolds,” Annals of Mathematics,
vol. 63, no. 1, pp. 20–63, 1956.

[32] Y. Aflalo and R. Kimmel, “Spectral multidimensional scaling,” Proceedings of the
National Academy of Sciences, vol. 110, no. 45, pp. 18052–18057, 2013.

[33] Y. Aflalo, H. Brezis, and R. Kimmel, “On the optimality of shape and data repre-
sentation in the spectral domain,” SIAM Journal on Imaging Sciences, vol. 8, no. 2,
pp. 1141–1160, 2015.

[34] U. Pinkall and K. Polthier, “Computing discrete minimal surfaces and their conju-
gates,” Experimental Mathematics, vol. 2, no. 1, pp. 15 – 36, 1993.

[35] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete differential-geometry
operators for triangulated 2-manifolds,” in Visualization and Mathematics III, (Berlin,
Heidelberg), pp. 35–57, Springer Berlin Heidelberg, 2003.

72

[36] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun, “Discrete laplace opera-
tors: No free lunch,” in Proceedings of the Fifth Eurographics Symposium on Geometry
Processing, SGP ’07, (Goslar, DEU), p. 33–37, Eurographics Association, 2007.

[37] M. Wardetzky, Convergence of the Cotangent Formula: An Overview, pp. 275–286.
Basel: Birkhäuser Basel, 2008.

[38] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” NIPS’16, (Red Hook, NY, USA),
p. 3844–3852, Curran Associates Inc., 2016.

[39] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas, “Functional
maps: A flexible representation of maps between shapes,” ACM Trans. Graph., vol. 31,
jul 2012.

[40] R. M. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal, and L. Guibas,
“Map-based exploration of intrinsic shape differences and variability,” ACM Trans.
Graph., vol. 32, jul 2013.

[41] W. Zeng, R. Guo, F. Luo, and X. Gu, “Discrete heat kernel determines discrete rie-
mannian metric,” Graphical Models, vol. 74, no. 4, pp. 121–129, 2012. GMP2012.

[42] D. Boscaini, D. Eynard, D. Kourounis, and M. M. Bronstein, “Shape-from-operator:
Recovering shapes from intrinsic operators,” Comput. Graph. Forum, vol. 34,
p. 265–274, may 2015.

[43] E. Corman, J. Solomon, M. Ben-Chen, L. Guibas, and M. Ovsjanikov, “Functional
characterization of intrinsic and extrinsic geometry,” ACM Trans. Graph., vol. 36,
mar 2017.

[44] A. Chern, F. Knöppel, U. Pinkall, and P. Schröder, “Shape from metric,” ACM Trans.
Graph., vol. 37, jul 2018.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,
p. 1735–1780, nov 1997.

[46] A. Graves, “Generating sequences with recurrent neural networks,” ArXiv,
vol. abs/1308.0850, 2013.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, 2016.

[48] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15, p. 448–456,
JMLR.org, 2015.

73

[49] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep
learning,” Journal of Big Data, vol. 6, July 2019.

[50] S. Mei, T. Misiakiewicz, and A. Montanari, “Learning with invariances in random
features and kernel models,” 2021.

[51] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical CNNs,” in International
Conference on Learning Representations, 2018.

[52] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, “Geodesic convolutional
neural networks on riemannian manifolds,” in 2015 IEEE International Conference on
Computer Vision Workshop (ICCVW), pp. 832–840, 2015.

[53] T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, “Gauge equivariant convolu-
tional networks and the icosahedral CNN,” in Proceedings of the 36th International
Conference on Machine Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97
of Proceedings of Machine Learning Research, pp. 1321–1330, PMLR, 09–15 Jun 2019.

[54] P. D. Haan, M. Weiler, T. Cohen, and M. Welling, “Gauge equivariant mesh {cnn}s:
Anisotropic convolutions on geometric graphs,” in International Conference on Learn-
ing Representations, 2021.

[55] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net,
2017.

[56] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems, NIPS’16, (Red Hook,
NY, USA), p. 3844–3852, Curran Associates Inc., 2016.

[57] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger, “Simplifying
graph convolutional networks,” in Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA
(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine Learning
Research, pp. 6861–6871, PMLR, 2019.

[58] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
attention networks,” in International Conference on Learning Representations, 2018.

[59] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein, “Ge-
ometric deep learning on graphs and manifolds using mixture model cnns,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Los Alami-
tos, CA, USA), pp. 5425–5434, IEEE Computer Society, jul 2017.

74

[60] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated attention
networks for learning on large and spatiotemporal graphs,” in UAI, 2018.

[61] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Çaglar Gülçehre,
H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash,
V. Langston, C. Dyer, N. M. O. Heess, D. Wierstra, P. Kohli, M. M. Botvinick,
O. Vinyals, Y. Li, and R. Pascanu, “Relational inductive biases, deep learning, and
graph networks,” ArXiv, vol. abs/1806.01261, 2018.

[62] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J.
Smola, “Deep sets,” in Advances in Neural Information Processing Systems (I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), vol. 30, Curran Associates, Inc., 2017.

[63] C. Joshi, “Transformers are graph neural networks,” The Gradient, 2020.

[64] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks to graphs,”
ArXiv, vol. abs/2012.09699, 2020.

[65] V. G. Satorras, E. Hoogeboom, F. B. Fuchs, I. Posner, and M. Welling, “E(n) equiv-
ariant normalizing flows,” in Advances in Neural Information Processing Systems
(A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), 2021.

[66] K. Cho, B. van Merrienboer, Çaglar Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for sta-
tistical machine translation,” in EMNLP, 2014.

[67] C. Tallec and Y. Ollivier, “Can recurrent neural networks warp time?,” in International
Conference on Learning Representations, 2018.

[68] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,” Diploma, Tech-
nische Universität München, vol. 91, no. 1, 1991.

[69] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Systems
(F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), vol. 25, Curran
Associates, Inc., 2012.

[70] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for
the 2020s,” 2022.

[71] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale,” in Interna-
tional Conference on Learning Representations, 2021.

75

[72] S. d’Ascoli, H. Touvron, M. L. Leavitt, A. S. Morcos, G. Biroli, and L. Sagun, “Convit:
Improving vision transformers with soft convolutional inductive biases,” in Interna-
tional Conference on Machine Learning, pp. 2286–2296, PMLR, 2021.

[73] H. Akbari, L. Yuan, R. Qian, W.-H. Chuang, S.-F. Chang, Y. Cui, and B. Gong,
“VATT: Transformers for multimodal self-supervised learning from raw video, audio
and text,” in Advances in Neural Information Processing Systems (A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), 2021.

[74] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, (Cambridge, MA, USA), p. 3104–3112, MIT
Press, 2014.

[75] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirec-
tional transformers for language understanding,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pp. 4171–4186, Association for Computa-
tional Linguistics, 2019.

[76] K. Atz, F. Grisoni, and G. Schneider, “Geometric deep learning on molecular repre-
sentations,” Nature Machine Intelligence, pp. 1–10, 2021.

[77] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari,
T. E. Smidt, and B. Kozinsky, “E(3)-equivariant graph neural networks for data-
efficient and accurate interatomic potentials,” 2021.

[78] F. Fuchs, D. E. Worrall, V. Fischer, and M. Welling, “Se(3)-transformers: 3d roto-
translation equivariant attention networks,” in NeurIPS, 2020.

[79] O.-E. Ganea, X. Huang, C. Bunne, Y. Bian, R. Barzilay, T. Jaakkola, and A. Krause,
“Independent se(3)-equivariant models for end-to-end rigid protein docking,” 2021.

[80] H. Stärk, O.-E. Ganea, L. Pattanaik, R. Barzilay, and T. Jaakkola, “Equibind: Geo-
metric deep learning for drug binding structure prediction,” 2022.

[81] N. C. Frey, S. Samsi, J. McDonald, L. Li, C. W. Coley, and V. Gadepally, “Scalable
geometric deep learning on molecular graphs,” 2021.

[82] B. Anderson, T. S. Hy, and R. Kondor, “Cormorant: Covariant molecular neural
networks,” Advances in neural information processing systems, vol. 32, 2019.

[83] B. Jing, S. Eismann, P. Suriana, R. J. L. Townshend, and R. O. Dror, “Learning
from protein structure with geometric vector perceptrons,” ArXiv, vol. abs/2009.01411,
2021.

76

[84] B. Jing, S. Eismann, P. N. Soni, and R. O. Dror, “Equivariant graph neural networks
for 3d macromolecular structure,” 2021.

[85] R. J. L. Townshend, S. Eismann, A. M. Watkins, R. Rangan, M. Karelina, R. Das, and
R. O. Dror, “Geometric deep learning of RNA structure,” Science, vol. 373, pp. 1047–
1051, Aug. 2021.

[86] Q. Yuan, S. Chen, J. Rao, S. Zheng, H. Zhao, and Y. Yang, “Alphafold-aware predic-
tion of protein-dna binding sites using graph transformer,” 2021.

[87] R. Evans, M. O’Neill, A. Pritzel, N. Antropova, A. Senior, T. Green, A. Ž́ıdek, R. Bates,
S. Blackwell, J. Yim, O. Ronneberger, S. Bodenstein, M. Zielinski, A. Bridgland,
A. Potapenko, A. Cowie, K. Tunyasuvunakool, R. Jain, E. Clancy, P. Kohli, J. Jumper,
and D. Hassabis, “Protein complex prediction with AlphaFold-multimer,” Oct. 2021.

[88] J. D. Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Black-
well, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche,
B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra,
D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan,
A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman,
J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning
for diagnosis and referral in retinal disease,” Nature Medicine, vol. 24, pp. 1342–1350,
Aug. 2018.

[89] M. Winkels and T. S. Cohen, “Pulmonary nodule detection in ct scans with equivariant
cnns,” Medical Image Analysis, vol. 55, pp. 15–26, 2019.

[90] S. S. Mahdil, N. Nauwelaers, P. Joris, G. Bouritsas, S. Gong, S. Bokhnyak, S. Walsh,
M. D. Shriver, M. Bronstein, and P. Claes, “3d facial matching by spiral convolutional
metric learning and a biometric fusion-net of demographic properties,” in 2020 25th
International Conference on Pattern Recognition (ICPR), pp. 1757–1764, IEEE, 2021.

[91] S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. J. Lee, B. Glocker, and D. Rueck-
ert, “Distance metric learning using graph convolutional networks: Application to
functional brain networks,” in MICCAI, 2017.

[92] S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. Guerrero, B. Glocker, and D. Rueckert,
“Disease prediction using graph convolutional networks: Application to autism spec-
trum disorder and alzheimer’s disease,” Medical Image Analysis, vol. 48, pp. 117–130,
Aug. 2018.

[93] S. Arslan, S. I. Ktena, B. Glocker, and D. Rueckert, “Graph saliency maps through
spectral convolutional networks: Application to sex classification with brain connec-
tivity,” in Graphs in biomedical image analysis and integrating medical imaging and
non-imaging modalities, pp. 3–13, Springer, 2018.

77

[94] B. M. Malone, A. Garćıa-Durán, and M. Niepert, “Learning representations of missing
data for predicting patient outcomes,” ArXiv, vol. abs/1811.04752, 2018.

[95] A. L. Frankel, C. Safta, C. Alleman, and R. Jones, “Mesh-based graph convolutional
neural networks for modeling materials with microstructure,” Journal of Machine
Learning for Modeling and Computing, vol. 3, no. 1, 2022.

[96] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph
convolutional neural networks for web-scale recommender systems,” in Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 974–983, 2018.

[97] J. Hao, T. Zhao, J. Li, X. L. Dong, C. Faloutsos, Y. Sun, and W. Wang, “P-companion:
A principled framework for diversified complementary product recommendation,” in
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, CIKM ’20, (New York, NY, USA), p. 2517–2524, Association for Com-
puting Machinery, 2020.

[98] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou, “Ali-
graph: A comprehensive graph neural network platform,” Proc. VLDB Endow., vol. 12,
p. 2094–2105, aug 2019.

[99] F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein, “Fake news de-
tection on social media using geometric deep learning,” ArXiv, vol. abs/1902.06673,
2019.

[100] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez, M. Nunkesser,
S. Lee, X. Guo, B. Wiltshire, et al., “Eta prediction with graph neural networks in
google maps,” in Proceedings of the 30th ACM International Conference on Informa-
tion & Knowledge Management, pp. 3767–3776, 2021.

[101] X. Fang, J. Huang, F. Wang, L. Zeng, H. Liang, and H. Wang, “Constgat: Contextual
spatial-temporal graph attention network for travel time estimation at baidu maps,”
in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’20, (New York, NY, USA), p. 2697–2705, Association
for Computing Machinery, 2020.

[102] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural networks
for social recommendation,” in The world wide web conference, pp. 417–426, 2019.

[103] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks in recommender
systems: A survey,” 2020.

[104] N. Stephenson, Snow Crash. Spectra Books, May 1992.

78

[105] J. Lin, H. Li, K. Chen, J. Lu, and K. Jia, “Sparse steerable convolutions: An efficient
learning of se (3)-equivariant features for estimation and tracking of object poses in 3d
space,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[106] Y. Fan, Z. Lin, J. Saito, W. Wang, and T. Komura, “Faceformer: Speech-driven 3d
facial animation with transformers,” arXiv preprint arXiv:2112.05329, 2021.

[107] A. Dundar, J. Gao, A. Tao, and B. Catanzaro, “Fine detailed texture learning for 3d
meshes with generative models,” 2022.

[108] D. Kulon, R. A. Guler, I. Kokkinos, M. M. Bronstein, and S. Zafeiriou, “Weakly-
supervised mesh-convolutional hand reconstruction in the wild,” in The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[109] T. Shen, J. Gao, K. Yin, M.-Y. Liu, and S. Fidler, “Deep marching tetrahedra: a
hybrid representation for high-resolution 3d shape synthesis,” in Advances in Neural
Information Processing Systems (A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, eds.), 2021.

[110] B. Jiang, Y. Hong, H. Bao, and J. Zhang, “Selfrecon: Self reconstruction your digital
avatar from monocular video,” arXiv preprint arXiv:2201.12792, 2022.

[111] S. Aliakbarian, P. Cameron, F. Bogo, A. Fitzgibbon, and T. J. Cashman,
“Flag: Flow-based 3d avatar generation from sparse observations,” arXiv preprint
arXiv:2203.05789, 2022.

[112] G. Daras, W.-S. Chu, A. Kumar, D. Lagun, and A. G. Dimakis, “Solving inverse
problems with nerfgans,” arXiv preprint arXiv:2112.09061, 2021.

79

Appendix

Here we provide supplementary mathematical background that enhances the thesis. Note
that the definitions we provide are, generally speaking, more abstract than necessary.

Definition 17 (Norm). A norm on a vector space X (over F a sub-field of C) is a function
∥ · ∥ : X → R satisfying the following properties for all x, y ∈ X and c ∈ F :

1. ∥cx∥ = |c| · ∥x∥ (absolute homogeneity)

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

3. ∥x∥ = 0 ⇐⇒ x = 0 (positive definiteness)

In general, we use ∥ · ∥ to denote the L2-norm defined in Definition 18.

Definition 18 (Lp-norm). Let p ≥ 1 be a real number.

For a vector x ∈ Rn the Lp-norm (or p-norm) of x is

∥x∥p =

(
p∑
i=1

xpi

)1/p

.

Note that the L2-norm (or 2-norm) is the Euclidean distance.

For a function f : X → R the Lp-norm (or p-norm) of f is

∥f∥p =
(∫

X

|f |p dx
)1/p

.

Definition 19 (Lp Space). The Lp space on domain X, denoted as Lp(X), consists of all
functions f : X → R with finite Lp-norm: ∥f∥p <∞.

Definition 20 (Isomorphism and Automorphism). Given two mathematical objects X and
Y an isomorphism between X and Y is a function f : X → Y that preserves the structure of
the objects and can be reversed by an inverse f−1 : Y → X (which also preserves structure).
We write X ∼= Y if X and Y are isomorphic. An automorphism on X is an isomorphism
between X and itself. We refer to the group of automorphisms on X as Aut(X). Examples
of isomorphisms include:

80

1. Bijections (Definition 21) on sets

2. Group isomorphisms (Definition 22)

3. Graph isomorphisms (Definition 14)

4. Homeomorphisms (Definition 30) on topological spaces

5. Bijective isometries (Definition 24) on metric spaces

6. Diffeomorphisms (Definition 38) on differential manifolds

Definition 21 (Bijection). Given sets X and Y we say the map f : X → Y is bijective if it
satisfies the following two properties:

1. f is one-to-one (also known as injective): f(x1) = f(x2) if and only if x1 = x2

2. f is onto (also known as surjective): for any y ∈ Y there exists x ∈ X such that
f(x) = y

Note that a bijection between X and Y admits an inverse f−1 and implies that the cardi-
nalities of the sets are equal: |X| = |Y |. An injection of X into Y implies |X| ⪯ |Y | while a
surjection of X onto Y implies |X| ⪰ |Y |.

Definition 22 (Group Isomorphism). Given two groups (G, ·) and (H, ∗) a group isomor-
phism between G and H is a bijection f : G → H that respects the group structure:

f(g1 · g2) = f(g1) ∗ f(g2), ∀g1, g2 ∈ G.

Definition 23 (Distance). A distance (or metric) on X is a function d : X ×X → [0,∞)
that satisfies the following properties for any x, y, z ∈ X:

1. d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Note that we can derive the non-negativity of d using the above properties. We call (X, d)
a metric space and often omit the d when it is clear from context.

Definition 24 (Isometry). Given two metric spaces (X, dX) and (Y, dY) an isometry is a
map f : X → Y that preserves distance:

dX(x1, x2) = dY (f(x1), f(x2)), ∀x1, x2 ∈ X.

Definition 25 (Topological Space). Given a set X and a corresponding set of subsets τ we
call (X, τ) a topological space if:

81

1. ∅ ∈ τ and X ∈ τ

2. Any arbitrary union of elements of τ is contained in τ

3. Any finite intersection of elements of τ is contained in τ

We refer to τ as a topology on X and call the elements of τ open sets. A closed set is a
subset of X whose complement is contained in τ .

Definition 26 (Neighborhoods). Given a topological space X and a point p ∈ X we call V
a neighborhood of p if there exists an open set U such that p ∈ U ⊂ V . If U is an open set
such that p ∈ U ⊂ X then we call U an open neighborhood. Furthermore, if X is a metric
space with distance d then the open ball of radius r about p: Br(p) = {x ∈ X : d(x, p) < r}
is an open neighborhood of p. Note that we often use the term ε-neighborhood of p to refer
to the ball Bε(p).

Definition 27 (Hausdorff). A topological space X is Hausdorff if any two points in X can
be separated by neighborhoods. Specifically, for any distinct x, y ∈ X there exist disjoint
open neighborhoods U ∋ x and V ∋ y (i.e. U ∩ V = ∅, U, V ⊂ X). Note that most spaces
we encounter will be Hausdorff.
Example: The Euclidean space Rn is Hausdorff.

Definition 28 (Second-Countable). A topological space X is second-countable if there is a
countable collection of open subsets U = {Ui : i ∈ N} such that any open U ⊂ X can be
written as U =

⋃∞
i=1 Uni

.
Example: The Euclidean space Rn is second-countable.

Definition 29 (Continuous Map). A map f : X → Y between topological spaces is contin-
uous if the preimage of any open set in Y is open in X:

Cy an open subset of Y =⇒ Cx = f−1(Cy) = {x ∈ X : f(x) ∈ Cy} an open subset of X.

Definition 30 (Homeomorphism). Given topological spacesX and Y we say that f : X → Y
is a homeomorphism if it satisfies the following properties:

1. f is a bijection between X and Y

2. f and f−1 are continuous maps

Definition 31 (Manifold). We require the following definition:

Definition 32 (Locally Euclidean). We say a topological space X is locally Euclidean
if there exists n ∈ N such that for every point p ∈ X there exists a neighborhood Vp
of p such that Vp is homeomorphic to Rn.

A manifold (or topological manifold) is a locally Euclidean Hausdorff topological space. We
say that M is an n-manifold if it is a manifold with neighborhoods homeomorphic to Rn.
Examples: The Euclidean space Rn is an n-manifold. The n-sphere (sphere in n+ 1 dimen-
sional real space) Sn = {x ∈ Rn+1 : ∥x∥ = 1} is an n-manifold.

82

Definition 33 (Atlases and Charts). For a topological space X a chart on X is a pair (U,φ)
consisting of an open subset U ⊂ X and φ a homeomorphism from U to an open subset of
Rn. An atlas for X is a collection of charts on X: {(Uα, φα) : α ∈ I} such that X =

⋃
α∈I Uα

(the collection of open sets covers X). Note that a manifold can be described using an atlas
where each chart describes a specific region of the manifold.

Definition 34 (Differentiable Atlas). A differentiable atlas for a topological space X is a
collection of charts on X such that for any two charts (U,φ) and (V, ψ) in the atlas the
transition map ψ ◦ φ−1 is differentiable. Note that the transition map is a homeomorphism
from φ(U ∩ V) → ψ(U ∩ V) (we assume U ∩ V ̸= ∅).

The motivation for this definition is the possibility of differential calculus on X. If we
consider f : X → R and g : R → X we note that we have functions between Euclidean
spaces:

f ◦ φ−1 = (f ◦ ψ−1) ◦ (ψ ◦ φ−1) : Rn → R
with domain φ(U ∩ V) and

φ ◦ g = (φ ◦ ψ−1) ◦ (ψ ◦ g) : R → Rn.

From the decompositions above we see that for the maps f ◦φ−1 and φ◦g to be differentiable
we require that ψ ◦ φ−1 be differentiable, which is the definition of the differentiable atlas.

We note that differentiable can have many meanings. It could mean k-times differen-
tiable which would give a Ck atlas. We will take it to mean infinitely differentiable or smooth
giving a C∞ atlas.

Lastly, the differentiable atlas admits amaximal differentiable atlas consisting of all charts
that are differentiably compatible (i.e. adding the chart to the differentiable atlas produces
a differentiable atlas) with said differentiable atlas.

Definition 35 (Differential Manifold). A differential manifold (or differentiable manifold or
smooth manifold) is a Hausdorff and second-countable topological space M with a maximal
differentiable atlas on M .
Examples: The Euclidean spaces Rn and the n-spheres are differential manifolds.

Definition 36 (Lie Group). A Lie group is a group G that is also a smooth manifold.

Definition 37 (Differentiable Map). A continuous map between smooth manifolds f :M →
N is differentiable if for any chart (U,φ) onM and any chart (V, ψ) onM the following map
between (subsets) of Euclidean spaces is differentiable:

ψ ◦ f ◦ φ−1 : φ(U ∩ f−1(V)) → ψ(V).

Definition 38 (Diffeomorphism). A diffeomorhphism between two smooth manifolds M
and N is a differential map f :M → N that is bijective and with differentiable inverse f−1.
We say f is a Ck-diffeomorphism if f and its inverse are k times continuously differentiable.

83

Definition 39 (Tangent Space). Given an n-manifold M the structure constructed by at-
taching a tangential copy of Rn to each point x ∈ M is the tangent space TxM . A tangent
vector is an element of the tangent space v ∈ TxM . See Figure 5.4 (“Tangent Space” -
Wikipedia) below for visuals of the tangent space.

(a) Tangent Space at a Single Point on the
Sphere S2 = {x ∈ R3 : ∥x∥2 = 1}

(b) Tangent Space TxM of a General Manifold
at x ∈ M with Tangent Vector v ∈ TxM along
the Curve γ(t) through x ∈ M

Figure 5.4: Visuals of the Tangent Space

We can additionally provide a more abstract definition of the tangent space. We rely on the
following definition:

Definition 40 (Equivalence Relation). An equivalence relation on a set X is a binary
relation ∼ with the following properties for all x, y, z ∈ X:

(a) x ∼ x (reflexivity)

(b) x ∼ y ⇐⇒ y ∼ x (symmetry)

(c) x ∼ y, y ∼ z =⇒ x ∼ z (transitivity)

The equivalence class of x ∈ X under ∼ is denoted as [x] = {y ∈ X : x ∼ y}.

Suppose M is a smooth n-manifold and consider x ∈ M . Take a coordinate chart (φ,U)
with U ∋ x an open subset of M . Take two curves γ1, γ2 : (−1, 1) → M with start points
at x = γ1(0) = γ2(0) and suppose that φ ◦ γ1 and φ ◦ γ2, maps from (−1, 1) to Rn, are
differentiable. We define on equivalence relation such that the curves γ1 and γ2 are equivalent
if the derivatives of φ◦γ1 and φ◦γ2 are equal at the point 0. The equivalence classes induced
by this equivalence relation are the tangent vectors of M at x and the tangent space is the
set of these equivalence classes (tangent vectors). Note that this definition is independent of
the selection of chart (φ,U).

Definition 41 (Tangent Bundle). For a differential manifold M the tangent bundle of M is
the disjoint union of tangent spaces of M :

TM =
⊔
x∈M

TxM.

84

https://en.wikipedia.org/wiki/Tangent_space
https://en.wikipedia.org/wiki/Tangent_space

Note that a disjoint union is a union in which identical objects are included as duplicates
with distinct labels. See Figure 5.5 (“Tangent Bundle” - Wikipedia) below for visuals of the
tangent bundle of the circle S1.

Figure 5.5: Visuals of the Tangent Bundle of the Circle S1 = {x ∈ R2 : ∥x∥ = 1}: Unorga-
nized (on left) and Organized into the Cylinder S1 × R (on right)

Definition 42 (Riemannian Manifold). A Riemannian manifold is a smooth manifold M
with a Riemannian metric g that admits a positive definite inner product gx on the tangent
space TxM of each point x ∈M :

gx : TxM × TxM → R, gx(v, v) > 0 for all v ∈ TxM such that v ̸= 0.

We sometimes write (M, g) to make the Riemannian metric explicit. See Figure 3.1 (Page
46, Figure 11 of Bronstein et al. [1]) for visuals of the basics of Riemannian geometry.
Examples: The Euclidean spaces Rn with Euclidean metric is a Riemannian manifold. The
n-sphere with Euclidean distance restricted to tangent vectors is a Riemannian manifold.

Definition 43 (Geodesic). Suppose (M, g) is a Riemannian manifold. For a continuously
differentiable curve γ : [a, b] →M define the length of the curve to be

ℓ(γ) =

∫ b

a

√
gγ(t)(γ′(t), γ′(t)) dt.

Given points x, y ∈M a geodesic between x and y is a curve with start point x and end point
y (i.e. γ(a) = x and γ(b) = y) with minimal length. This length is the geodesic distance dg
between the points x and y:

dg(x, y) = min{ℓ(γ) for γ such that γ(a) = x, γ(b) = y}.

See Figure 5.6 (“Deriving the Surface Area of a Spherical Triangle” - Mathematics Stack
Exchange) for a visual of geodesics (specifically a spherical triangle).

85

https://en.wikipedia.org/wiki/Tangent_bundle
https://math.stackexchange.com/questions/110075/deriving-the-surface-area-of-a-spherical-triangle
https://math.stackexchange.com/questions/110075/deriving-the-surface-area-of-a-spherical-triangle

Figure 5.6: Spherical Triangle Formed by the Pairwise Intersections of Geodesics (the Three
Great Arcs a, b, c) at the Three Vertices A,B,C

Definition 44 (Haar Measure). The intuition behind the Haar measure is that it assigns
a sort-of volume to subsets of certain kinds of groups G. To properly define it requires a
substantial amount of mathematical machinery, which we first introduce:

Definition 45 (Topological Group). A topological group is a topological space G that
also forms a group (G, ·) with a continuous operator · and continuous group inverse
map: g 7→ g−1.
Example: The Euclidean space Rn under addition is a topological group.

Definition 46 (Compact). If X is a topological space then we say it is compact if for
any collection of open subsets U such that

X =
⋃
U∈U

U

there exists a finite sub-collection F ⊂ U (called a finite cover) such that

X =
⋃
U∈F

U.

We say K ⊂ X is a compact subset (of X) if for any collection of open subsets UK
such that

K ⊂
⋃

U∈UK

U

there exists a finite sub-collection FK ⊂ UK (again called a finite cover) such that

K ⊂
⋃

U∈FK

U.

86

Examples : The interval [0, 1] is a compact space. Any closed and bounded subset of
Rn is a compact subset by the Heine-Borel theorem.

Definition 47 (Locally Compact). We say that a topological space X is locally com-
pact if for any point p ∈ X there exists an open set U and a compact set K such that
x ∈ U ⊂ K.
Examples : Compact Haussdorf spaces such as the interval [0, 1] are all locally compact.
The space Rn is locally compact (again by Heine-Borel).

Definition 48 (σ-algebra). Given a set X a σ-algebra (on X) is a collection of subsets
F such that:

(a) X ∈ F and ∅ ∈ F
(b) A ∈ F =⇒ Ac = X \ A ∈ F (closure under complementation)

(c) A1, A2, ... ∈ F =⇒
⋃∞
n=1An ∈ F (closure under countable union)

For G a collection of subsets of X the σ-algebra generated by G, denoted σ(G), is the
smallest sigma-algebra (minimal number of elements) that contains all elements of G.
Example: The power set of X (the set of all subsets of X) P(X) = {A : A ⊂ X} is a
σ-algebra.

Definition 49 (Measure). Given a set X and F a σ-algebra on X a measure is a
function µ : F → [0,∞] such that:

(a) µ(∅) = 0

(b) µ(A) ≥ 0 for all A ∈ F (non-negativity)

(c) For A1, A2, ... disjoint (Ai ∩ Aj = ∅)

µ

(
∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) (σ-additivity or countable additivity)

We say µ is non-trivial if µ is not uniquely 0. We call (X,F) a measurable space and
(X,F , µ) a measure space.
Examples: The Lebesgue measure on Rn measures the n-dimensional volume (length,
area, and volume in 1, 2, and 3 dimensions, respectively). If we have µ(X) = 1 then
µ = P is a probability measure and (X,F ,P) is a probability space.

Having defined the necessary machinery we now define the Haar measure. Suppose G is a
locally compact Hausdorff topological group and let B the Borel σ-algebra generated by all
open subsets of G. Given S ⊂ G we define gS = {gs : s ∈ S}. Haar’s theorem implies the
existence of a unique (up to multiplicative constant) nontrivial measure µ on B such that:

1. µ(gB) = µ(B) for any g ∈ G and Borel set B ∈ B (left-translation invariance)

87

2. µ(K) <∞ for all compact subsets K ⊂ G

3. µ is outer regular on Borel subsets B ⊂ G:

µ(B) = inf{µ(U) : B ⊂ U,U open}

4. µ is inner regular on open subsets U ⊂ G:

µ(U) = sup{µ(K) : K ⊂ U,K compact}

The above is the left Haar measure. A right Haar measure that is right-translation invariant
(i.e. µ(Bg) = µ(B) for Borel B with Sg = {sg : s ∈ S}) also exists. It is worth noting that
the left and right Haar measures can be different.
Examples:

1. For a discrete group G the Haar measure (both left and right) is the counting measure
(which returns the number of elements in a subset).

2. The Haar measure for Rn under addition coincides with the Lebesgue measure re-
stricted to Borel subsets of Rn.

3. The Haar measure on the positive real numbers under multiplication is µ(B) =
∫
B
dt
t

for Borel sets B ⊂ R. To see the translation invariance note that for 0 < x < y we
have µ((x, y)) = log y

x
and µ(c(x, y)) = log cy

cx
= log y

x
.

Definition 50 (Operator). The term operator is a stand-in for the term function.

Definition 51 (Spectrum). The spectrum of a linear operator T (represented as a matrix)
is the set of values λ such that T − λ · 1 is not invertible. Note that any eigenvalue of T is
contained in the spectrum of T .

Definition 52 (Fiber Bundle). A fiber bundle is a structure (E,B, π, F) with E,B, F
topological spaces (known as the total space, base space, and fiber, respectively) and π : E →
B a continuous surjection called the projection map that is locally trivial in the following
way: For every x ∈ B there exists Ux ⊂ B an open neighborhood of x and a homeomorphism
φ : π−1(Ux) → Ux × F such that π coincides with projUx

(φ) the projection of φ onto Ux.
This condition is equivalent to the diagram below commuting for all x ∈ B:

π−1(Ux) Ux × F

Ux

φ

π
projUx

Note that the preimage of any point in B is homeomorphic to the fiber: π−1({x}) ∼= F for
all x ∈ B.

Definition 53 (Vector Bundle). A vector bundle is a fiber bundle (E,B, π, F) where the
fiber F is a vector space.

88

	Abstract
	Acknowledgements
	Introduction
	Fundamentals of Machine Learning
	Supervised Learning
	Predicting Protein Stability

	Unsupervised Learning
	Clustering
	Language Modeling

	Reinforcement Learning
	Classical Machine Learning
	Linear Regression

	Deep Learning and Neural Networks
	Feedforward Neural Networks
	Recurrent Neural Networks
	Convolutional Neural Networks
	Transformers
	Graph Neural Networks

	Motivation for Geometric Deep Learning
	This Thesis

	The Geometric Deep Learning Blueprint
	Symmetry: A Mathematical Perspective
	Domain Structure and Stability
	More Granular Structure
	Stability and Local Symmetries
	Function Stability
	Domain Stability
	Coarsening via Scale Separation

	The Blueprint

	Geometric Domains: 5 Gs and an M
	Graphs
	Grids
	Groups
	Geodesics
	Manifold Basics
	Geodesics on Manifolds
	Isometries and Symmetries
	Fourier Analysis on Manifolds
	Convolution on Manifolds
	Spectral Convolution
	Spatial Convolution

	Gauges
	Tangent Bundles
	Gauge Symmetry

	Meshes
	Laplacian Matrices
	Spectral Convolution on Meshes
	Functional Maps

	Geometric Deep Learning Models
	Convolutional Neural Networks
	Group-Equivariance
	Meshes

	Graph Neural Networks
	Transformers (and more)
	Equivariant Message-Passing

	Recurrent Neural Networks
	Long Short-Term Memory

	Applications
	Machine Learning
	Biochemistry: Molecules and Proteins
	AlphaFold

	Healthcare
	Networks
	The Metaverse: Virtual and Augmented Reality

	Bibliography
	Appendix

