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Abstract

We apply multi-input multi-output (MIMO) models [3], which are models designed
to replace traditional ensembles, to the space of biological sequence design. Specif-
ically, we aim to model protein fluorescence using data from Sarkisyan et al. [7]
(this modeling task will be dubbed “the fluorescence task"). We extend the original
MIMO architecture designed for classification to regression and compare it to
traditional model ensembles. We consider both feed-forward and convolutional
architectures. We find that MIMO models achieve similar performance on the
fluorescence task while also having lower residual correlations (measured between
different outputs of the MIMO models and different ensemble components for the
ensembles). Furthermore, we verify empirically that an N -input/output MIMO
model has O(N) faster inference time than an ensemble of N models. Our re-
sults provide evidence for the usefulness of MIMO networks for protein design
as a potential replacement for traditional ensembles. Our code is made publicly
available1.

1 Introduction

There has been great interest recently in machine learning based biological sequence design [9].
Oracles, models designed to predict properties of biological sequences, are an integral part of the
design workflow. Like other machine-learning problems, oracle diversity is highly valued. Model
ensembles are used as one approach to increasing diversity, however there is a trade-off here with
inference time and compute requirements. We propose using multi-input multi-output (MIMO)
networks [3] to model biological sequences. The motivation for MIMO networks is the lottery ticket
hypothesis [2], which states that only a fraction of a neural network’s parameters are necessary to
preserve performance. MIMO proposes training multiple models in one and using the average of
the outputs as an ensemble value, thus reducing model inference time relative to ensembles while
preserving (or perhaps enhancing) the increased model diversity. In this project, we will explore
modeling various protein sequence with MIMO models and comparing performance, both on the
relevant biological task and in terms of inference time, to traditional ensembles.

2 Background

2.1 Multi-Input Multi-Output (MIMO) Models

Multi-input multi-output (MIMO) models were introduced by Havasi et al.[3]. The authors showed
that MIMO models improved performance relative to ensembles on the computer vision benchmarks

1https://github.com/amirshane/ProtMIMO
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CIFAR10, CIFAR100, and ImageNet, while also offering a speed-up. MIMO models aim to replace
traditional ensembles of N models by training a single model that takes in N inputs and outputs
N corresponding values. During training, the dataset is shuffled N times so that the model sees
N distinct inputs per pass. For inference, the same input is given N times and the N outputs are
averaged. While the original MIMO architecture was designed for classification tasks, we modify the
architecture for regression tasks. See Figure 1 for a diagram comparing ensembles and MIMO for
regression.

Figure 1: Traditional Ensemble of Models vs. Multi-Input Multi-Output (MIMO) Model

2.2 Proteins

We consider proteins using only their amino acid sequence (primary structure). This sequence
is a string consisting of tokens from a 21-letter alphabet that includes the 20 standard amino
acids [5] as well as a pad index. A length ℓ protein a = a1a2 · · · aℓ is thus modeled as a dis-
crete sequence x = (x1, x2, ..., xℓ) with xi ∈ {0, 1, ..., 19} and potentially padded at the end to
(x1, x2, ..., xℓ, 20, 20, ..., 20).
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2.2.1 Fluorescence Landscape Prediction

This regression task involves mapping a protein to its log-fluorescence, which is a real-valued label.
The experimental data is from Sarkisyan et al. [7] and the curated dataset is from TAPE2. The data
consists of mutated variants of a wild-type GFP protein with edit distance up to 14. The train set
contains all variants within edit distance 3 of the wildtype (at most 3 mutations away) and the test set
contains all variants at least 4 mutations away from the wildtype. This split by edit distance allows
for testing the generalizability of a model trained on a small (local) neighborhood of the wildtype to
a larger (global) neighborhood. Note that because of this split the train set consists of 82% bright
proteins (log-fluorescence greater than 2.5) and 18% dark proteins (log-fluorescence less than 2.5)
whereas the test set consists of only 32% bright proteins and 68% dark proteins. This class imbalance
makes it difficult for models to generalize from the low mutation train data to the high mutation test
data. The primary metric of interest is Spearman’s rank correlation coefficient ρ on the test set.

3 Methods

We describe our methods here. We consider two distinct MIMO architectures, one that is feed-forward
and another that is convolutional. We use the Adam optimizer [4] with a fixed learning rate and run
several experiments iterating over model depth and number of inputs.

3.1 Architectures

The first architecture we use is a feed-forward architecture. Note that the input is a one-hot encoded
protein sequence of dimension 20 × (N × ℓ) where N is the number of model inputs and ℓ is
the maximum sequence length. We first apply a fully-connected encoder layer of dimension 512:
RN×ℓ 7→ R512. We subsequently apply L fully-connected layers that map to dimension 256. ReLU
is applied after every layer. Finally, we apply a multi-head linear layer, which is a fully-connected
layer that returns N outputs. We denote this architecture as Fm(N,L) for the MIMO version and
Fe(N,L) for the traditional ensemble. Note that for the traditional ensemble the multi-head linear
lyear is just a standard linear layer.

The second archicture is a convolutional neural network. We consider the same input as before
and again use a fully-connected encoder layer of dimension 512. We subsequently apply L 1-
dimensional convolutional layers with feature size 64 and kernel width of 5. We do not pool in
between convolutional layers but ReLU is again applied after each layer and finally a multi-head
linear layer is applied as in the case of the feed-forward architecture. We denote this architecture as
Cm(N,L) for the MIMO version and Ce(N,L) for the traditional ensemble.

3.2 Training

The models are trained using the Adam optimizer with a fixed learning rate of 10−4 and a batch
size of 32 for a maximum of 100 epochs. The fluorescence dataset, as curated by TAPE, has a train,
validation, and test set. For an ensemble of N models we use N different random seeds s1, ..., sN to
shuffle the data (i.e. the ith model is trained with data shuffled using seed si). For the corresponding
MIMO model we use N copies of the data with the ith copy shuffled using seed si. Early stopping
is implemented with a patience of 10 (training stops early if validation loss does not improve for
10 sequential epochs). The loss function is the mean-squared error. For the MIMO architecture the
predictions and labels are flattened before loss and gradient computation.

3.3 Experiments

We train MIMO models and ensembles of both architectures for several different parameters (dif-
ferent numbers of layers and numbers of inputs). Specfically, we train and evaluate the models
{Fm(N,L), Fe(N,L), Cm(N,L), Ce(N,L)} for 2 ≤ N ≤ 5 and 1 ≤ L ≤ 10. For evaluation, we
compute Spearman ρ on the test set as well as model residual correlations. For residual correlations,
we compute Pearson correlations between the residuals y − ŷ of the different models. For ensembles,
we consider the residuals of the different components of the ensembles (models i and j) and for

2https://github.com/songlab-cal/tape
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MIMO models we consider the residuals of the different outputs of the model (outputs i and j).
Note that lower residual correlations between models indicates a lower probability of the models
agreeing on when they are wrong, which measures model diversity. Additionally, we compute average
inference times for all models.

4 Results

We present our results here. We consider three axes of performance: quality of fit with Spearman ρ,
diversity with model residual correlations, and inference time. We find that our results are robust to
architecture choice.

4.1 Quality of Fit

We present box-plots of test-set Spearman ρ’s below. We find that both architectures achieve a
maximum value of ρ ∈ [0.67, 0.68], which is in-line with other methods [8].

In Figure 2 and Figure 3 we see that both architectures achieve similar top values of ρ while
the convolutional models tend to have less variance. Additionally, we see that as the number of
inputs/outputs of the MIMO models increase the median ρ tends to decrease considerably, whereas
for the convolutional models the opposite trend is observed (but with an order of magnitude smaller
change in values). The former result is likely a result of the MIMO network being “overloaded”
(asked to predict too many outputs).

Figure 2: Test-Set Spearman ρ as a Function of Number of Inputs (Ensemble Size) for Feed-Forward
Models, MIMO Models (Left) and Ensemble Models (Right)

Figure 3: Test-Set Spearman ρ as a Function of Number of Inputs (Ensemble Size) for Convolutional
Models, MIMO Models (Left) and Ensemble Models (Right)
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In Figure 4 and Figure 5 we see that for both architectures increased model depth does not appear to
improve performance. For the MIMO models, in particular, more layers appears to worsen average
performance.

Figure 4: Test-Set Spearman ρ as a Function of Model Depth for Feed-Forward Models, MIMO
Models (Left) and Ensemble Models (Right)

Figure 5: Test-Set Spearman ρ as a Function of Model Depth for Convolutional Models, MIMO
Models (Left) and Ensemble Models (Right)

Our results suggest that MIMO models fit the dataset approximately as well as the ensemble models.

4.2 Diversity

We present box-plots of average model residual correlations below.

In Figure 6 and Figure 7 we see that the components of the ensemble models tend to have very high
residual correlations (> 0.95 for the feed-forward architecture and > 0.90 for the convolutional
architecture). Furthermore, these correlations stay high regardless of ensemble size. The MIMO
models, however, tend to have much lower residual correlations and the median residual correlation
appears to decrease as the number of inputs/outputs to the model increases.

In Figure 8 and Figure 9 we see that the median residual correlation tends to decrease substantially
for both MIMO architectures as the number of layers increases. This value stays the same for
convolutional ensembles and very modestly decreases for the feed-forward ensembles (by an order of
magnitude less than for the MIMO models).

Our results suggest that MIMO models tend to have considerably lower residual correlations than
ensembles, leading us to conclude that the MIMO models produce more diverse predictions.
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Figure 6: Average Model Residual Correlations as a Function of Number of Inputs (Ensemble Size)
for Feed-Forward Models, MIMO Models (Left) and Ensemble Models (Right)

Figure 7: Average Model Residual Correlations as a Function of Number of Inputs (Ensemble Size)
for Convolution Models, MIMO Models (Left) and Ensemble Models (Right)

Figure 8: Average Model Residual Correlations as a Function of Model Depth for Feed-Forward
Models, MIMO Models (Left) and Ensemble Models (Right)

4.3 Inference Time

We compute the ratio of inference times between each ensemble model and MIMO model (with the
same architecture and hyperparameters). For the ensemble models, the inference time is the sum
of the inference times for all components of the models. We expect this ratio to be O(N) for an N
input/output MIMO model.
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Figure 9: Average Model Residual Correlations as a Function of Model Depth for Convolution
Models, MIMO Models (Left) and Ensemble Models (Right)

In Figure 10 we present box-plots of the inference time ratios for both architectures. We see the
desired trend as the ratio tends to increase as N increases and it does so in a linear fashion (note that
the variability comes from the number of layers in the model). The time ratio is generally larger for
the convolutional models than the feed-forward models, which is due to the fact that the convolution
operations are more expensive than the feed-forward operations and so the initial encoder layer
and multi-head output layer (which have run-times of O(N)) has less impact on the entire model’s
inference time.

Figure 10: Ratios of Model Inference Times as a Function of Number of Inputs (Ensemble Size) for
Feed-Forward Models (Left) and Convolutional Models (Right)

In Figure 11 we plot inference time ratios as a function of model depth. As expected, we see that
inference time ratios increase as the number of inputs increase. We additionally see the ratios increase
as model depth increases, which makes sense as more hidden layers results in the initial encoder
and multi-head output layer taking up a smaller portion of the total model inference time. For the
convolutional models, in particular, we see relatively linear increases of the inference time ratios as
the number of inputs increases.

Our results suggest that the inference time ratio of an ensemble of N models to an N input/output
MIMO model approaches O(N) as the model depth (more generally total hidden layer inference
time) increases. This lines up precisely with the theoretical limit.

5 Discussion

We find that for the fluorescence task, MIMO models perform similarly to traditional ensembles on
test-set Spearman ρ. However, as N , the number of inputs/outputs of the MIMO models, increases, ρ

7



Figure 11: Ratios of Model Inference Times as a Function of Model Depth for Feed-Forward Models
(Left) and Convolutional Models (Right)

tends to decrease. This is aligned with theory as the lottery ticket hypothesis would imply that there
is some N for which model performance is sacrificed (corresponding to a highly-pruned model).

It is worth noting that MIMO models have considerably lower residual correlations than ensembles,
which suggests that their predictions are more diverse. The residual correlations also tend to decrease
as N increases and as the model depth L increases. This presents us with a trade-off of absolute
performance for diversity by increasing N and L.

Finally, we see that MIMO models have faster inference times by an O(N)-factor, which would
enable greater throughput.

Considered together, our results provide some evidence for the usefulness of MIMO models over
traditional ensembles for protein design.

5.1 Future Direction

The immediate next direction would be to consider additional protein design benchmarks for both
classification and regression tasks. Examples of such benchmarks can be found in TAPE [6] and
FLIP [1]. We in fact implemented experiments for the stability regression task from TAPE but were
unable to run them due to time and resource constraints. Validating our results on several benchmarks
would provide strong evidence for using MIMO models instead of ensembles.
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