
DIHNOSIR: A graph-theoretic DBSCAN-based approach to

clustering

Amir Shanehsazzadeh1, Roland L. Dunbrack, Jr.1*

1 Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA

* roland.dunbrack@fccc.edu

Abstract

Cluster analysis is a means of categorizing elements of a data set together based on

properties of the data. Traditional density-dependent clustering algorithms such as

DBSCAN are effective in clustering data with convex clusters and some noise

(unstructured points). However, these algorithms fail to effectively cluster data with

high (10 - 20)% noise and varying cluster density. In this work, we present two versions

of DIHNOSIR: Density-Independent High Noise Optimized Sorting by Iterative

Reduction, Strong DIHNOSIR and Weak DIHNOSIR. Strong DIHNOSIR runs

DBSCAN over a 2-D grid of (ε,minPts) parameters and stores the clusters returned by

DBSCAN that satisfy a user-defined constraint as subclusters {S1, S2, ..., Sm}. We

create an undirected graph with vertices {S1, S2, ..., Sm} and for any i, j we connect Si

and Sj using Simpson’s similarity index (see Equation 4). If SSI(i, j) is greater than a

positive threshold value an edge is placed between Si and Sj . The connected

components of this graph are considered and the union of the subclusters that form said

connected components are used to form the final clusters {C1, C2, ..., Ck}. Weak

DIHNOSIR works similarly to Strong DIHNOSIR, but does not require a user-defined

cluster constraint function. Instead, Weak DIHNOSIR removes merged clusters by

considering the indegree of vertices in the transitive reduction of the directed graph

formed with the subclusters, {S1, S2, ..., Sm} as vertices and edges formed from Si to Sj

if Si ⊆ Sj . The user is left the task of running additional iterations of DIHNOSIR and

December 14, 2018 1/27

pruning the data by removing or combining the returned clusters based on the goals of

their clustering. DIHNOSIR’s power is demonstrated on Ramachandran plots

representing flips and antibodies. The accurate clustering of these data allows for

improved protein structure design, prediction, and validation. DIHNOSIR’s source code

and documentation can be found at https://github.com/amirshane/dihnosir.

Author summary

Ramachandran plots are an effective way of visualizing the energetically feasible values 1

for the dihedral angles ψ and φ of amino acid residues in protein structures. These plots 2

are one of many real-world examples of data with high (10 - 20)% noise content and 3

varying cluster density. Generally there are three obviously dense regions in a 4

Ramachandran plot: α, αL, and β, which correspond to right handed alpha-helices, left 5

handed alpha-helices, and beta sheets, respectively. However, the β region consists of 6

three distinct sub-regions: βs, βp, and γ. Clustering Ramachandran plots with 7

traditional algorithms such as DBSCAN is difficult due to the aforementioned 8

properties of the data. The ability to cluster these plots would provide a great deal of 9

information regarding the feasibility of potential backbone conformations of various 10

proteins. Furthermore, a variety of other forms of data have similar properties that 11

make them difficult to cluster with current density-dependent algorithms. Our approach 12

was to create DIHNOSIR, a semiautonomous density-independent algorithm based on 13

DBSCAN that works by running numerous instances of DBSCAN on the data and using 14

a graph-theoretic approach on the subclusters returned by DBSCAN to create final 15

clusters. DIHNOSIR’s power is demonstrated by clustering two data sets of protein 16

structural data that are derived from flip and antibody backbone dihedral angle 17

measures. 18

Introduction 19

Cluster Analysis 20

Cluster analysis encompasses the numerous methods of unsupervised pattern discovery 21

in data sets based on various similarities between data points. A cluster is a 22

December 14, 2018 2/27

homogeneous grouping of objects. The definition of homogeneity varies but generally 23

characteristics such as distance are used to determine how closely related two objects are. 24

Robust clustering algorithms must not only be able to create homogeneous groupings of 25

related data but they must also be able to determine non-homogeneous groupings of 26

data that are non-informative, known as noise. Data with cluster ”separation,” 27

substantial distance between clusters, are much easier to cluster. The addition of noise 28

to a data set poses a significant issue. The position of the noise relative to the clusters is 29

also important. Noise that is interspersed in between clusters is much more difficult to 30

discern than noise that represents outliers in the data. Furthermore, different clustering 31

methods must be used for different clustering objectives. [3] Therefore, we must not 32

have a rigid definition of clustering. Rather, for best results, we must evaluate the data 33

on a case-by-case basis to determine what exactly the objective of the clustering is. 34

With that said it is essential to have both a qualitative and quantitative 35

understanding of the DBSCAN algorithm that DIHNOSIR is based on. Algorithms like 36

DBSCAN [12] do not require the number of clusters but they are dependent on the 37

parameters ε, which is the maximum radius to consider and minPts, which is the 38

minimum number of points required to form a cluster. Although DBSCAN is robust 39

when dealing with a variety of data. The question of what ε and minPts combinations 40

should be used is still open. DBSCAN relies heavily on these two parameters to 41

determine the shape and size of the determined clusters. Hierarchical clustering [4] has 42

been helpful in determining the best values of ε and minPts for DBSCAN, but the fact 43

that these algorithms are density-dependent results in them failing to cluster data with 44

varying cluster density. Additionally, the varying cluster density results in these 45

algorithms failing to be robust when faced with noise that is interspersed between 46

clusters with significantly different densities. A more rigorous explanation of the 47

DBSCAN algorithm is given in the Methods section. 48

It is not intuitively obvious how to determine whether a clustering is ”good.” Cluster 49

validation is a field in itself. [8,13,15] While attempting to validate sub-clusterings of our 50

data we cannot use a ground truth (beforehand knowledge of the answer). Furthermore, 51

there are very few clustering metrics that are unsupervised and do not rely on a ground 52

truth. Within DIHNOSIR we use one of these metrics: Silhouette Score. Silhouette 53

Score is a measure of the quality of a model. This metric compares intra-cluster 54

December 14, 2018 3/27

cohesion, similarity of elements within a cluster, to similarity with other clusters. [20] A 55

mathematically rigorous explanation of Silhouette Score is given in the Methods section. 56

We proceed by describing the type of data DIHNOSIR was originally designed for and 57

then by giving a thorough explanation and justification of the algorithms and metrics 58

we implement into DIHNOSIR. In order to showcase the individual steps used by 59

DIHNOSIR we present pseudocode representations of DIHNOSIR’s sub-algorithms. We 60

also present DIHNOSIR’s outputs for the flip and antibody data. 61

Ramachandran Plots 62

Ramachandran plots [18], developed by Gopalasamudram Ramachandran, are a popular 63

method for visualizing the energetically allowed dihedral angles ψ and φ, planar angles 64

around the Cα–C and Cα–N bonds, respectively, for amino acid residues in protein 65

backbone structures. The Ramachandran plot consists of five discernible regions, each 66

of which corresponds to a distinct backbone structure: α, αL, βs, and βp, γ. [7] The α 67

region corresponds to the right-handed helix structure. In this region the CO and NH 68

dipoles are antiparallel and can form hydrogen bonds in opposite directions to create a 69

helical structure. The orientation of the CO and NH dipoles determines whether a 70

α-helix, π-helix, or 310-helix is formed. The αL region is a near mirror image of the α 71

region about the central diagonal and corresponds to the left-handed helix structure. 72

Steric hindrance between Cβ and O atoms prevents this region from being an exact 73

mirror image. In the βs region the CO and NH dipoles are parallel, which permits the 74

formation of β-sheets. [23] In the βp region the CO and NH dipoles are nearly 75

perpendicular. This region is induced by optimization of the COi−1...CO 76

interaction. [14] In the γ region the outer CO and NH dipoles form a highly distorted 77

hydrogen bond, known as a γ-turn. This region is induced by the COi−1...NHi+1 78

interaction. [16] 79

Protein Backbone Conformations 80

The graphs presented in this paper are a simplification of the data. Generally, when 81

dealing with real data there is an additional dimension that is scientifically qualitative 82

rather than quantitative. This qualitative dimension gives a physical meaning to the 83

December 14, 2018 4/27

data points and to the clusters that are returned. Our extra dimension represents the 84

backbone conformations of the proteins being examined. This extra dimension can even 85

be considered as a simplification of multiple dimensions, one for each residue in the 86

protein. In this paper we look at the clusters as backbone conformations, for which each 87

set of corresponding elements of the conformation belongs to its own Ramachandran 88

plot. We use four letters to represent a conformation. The letter A represents the 89

middle left region of the Ramachandran plot (right-handed α-helices), B represents the 90

upper left region (β-sheets), L represents the middle right region (left-handed α-helices), 91

and the letter E represents the lower right region (extended structures). The letter E is 92

common for the amino acid Glycine (often refered to as G instead of E), which can exist 93

in numerous allowed and disallowed regions of the Ramachandran plot due to its lack of 94

a beta carbon Cβ . [6] 95

The graphs in the Results section can be analyzed by choosing a specific residue in a 96

conformation and locating the corresponding 2-D cell in the graph. The structure of the 97

cluster should correspond to the region designated by the letter of the residue in the 98

conformation. For example, if we look at the AA→BL conformation for the flip data in 99

Figure 1, residue 1 (Res1 = A) has a cluster in the middle left region as expected. 100

Similarly residue 2 (Res2 = A), residue 3 (Res3 = B), and residue 4 (Res4 = L) have 101

clusters in the middle left, upper left, and middle right regions, respectively, as expected. 102

DBSCAN 103

The DBSCAN algorithm [12] has been prominent since its introduction in 1996. 104

Numerous variants of the original DBSCAN algorithm have also been created. [1, 21] 105

DBSCAN does not require the number of clusters as an input. Instead it takes two 106

inputs: ε, the largest radius to consider for a datum and minPts, the least number of 107

points needed to form a cluster. 108

DBSCAN works by doing a distance-query for all points in the data set. Any datum 109

with minPts many points (including the datum itself) in an ε-neighborhood of the 110

datum are labeled core points. A point p is directly-density reachable from a point q if q 111

is a core point and d(p, q) ≤ ε. A point p is density-reachable from a point q if there 112

exists a sequence of points q = p1, p2, ..., pn = p such that pi is directly-density 113

December 14, 2018 5/27

reachable from pi+1. A point p is density-connected to a point q if there exists a point o 114

such that both p and q are density-reachable from o. We abstractly define a cluster C in 115

a data set X as a subset of X such that ∀p, q ∈ X, if p ∈ C and q is density-reachable 116

from p then q ∈ C and ∀p, q ∈ C, p is density-connected to q. The DBSCAN algorithm 117

first determines which datums are core points. Then it takes a core point p and forms a 118

cluster with all points (core and non-core) that are density-reachable from p. The 119

process is repeated with any core points within this cluster. All non-core points that are 120

within a distance of ε from a cluster are deemed border points and the remaining 121

non-core points are deemed noise. 122

Another way to think about DBSCAN is in a more abstract, graph-theoretic way. 123

After determining all core points in a data set DBSCAN creates a graph of all points in 124

the data with edges between ε-neighbors. The clusters are initially set to the connected 125

components of the core points in the graph. Non-core points are added to a cluster if 126

they are an ε-neighbor of said cluster. Otherwise they are added to noise. 127

Silhouette Score 128

The Silhouette Score [20] measures how well a clustering model fits an individual point. 129

All individual points are considered by comparing intra-cluster cohesion to inter-cluster 130

separation. For a given x ∈ X we let 131

s(x) =
b(x)− a(x)

max(a(x), b(x))
∈ [−1, 1] (1)

where a(x) is the average distance of x to all other points in its cluster and b(x) is the 132

minimum average distance from x to all points in the cluster nearest to x that x is not 133

contained in. Summing over all datums gives the silhouette score of a clustering as 134

S(X) =
∑
x∈X

s(x)

|X|
∈ [−1, 1]. (2)

Silhouette Score works well with most distance metrics. The Minkowski distance and 135

Euclidean or Manhattan metrics are most common. [19] 136

December 14, 2018 6/27

Graph Theory 137

DIHNOSIR’s formation of clusters uses a graph theoretic approach. A graph G is an 138

ordered pair (V,E) where V is a set of vertices also known as nodes and E is a set of 139

edges which are 2-element subsets of V that indicate connectivity between the two 140

elements. [24] In an undirected graph there is no distinction between a pair of vertices 141

in an edge. In a directed graph an edge is directed from one vertex to another. Strong 142

DIHNOSIR only uses undirected graphs, whereas Weak DIHNOSIR uses both directed 143

and undirected graphs. A connected graph is an undirected graph for which there is a 144

path between any two vertices of the graph. A subgraph G′ of a graph G is an ordered 145

pair (V ′, E′) of vertices and edges for which V ′ ⊆ V and E′ ⊆ E. A connected subgraph 146

of a graph G is thus a subgraph of G that is itself a connected graph. A connected 147

component of a graph G is a connected subgraph of G that is not connected to the rest 148

of the supergraph. The degree of a vertex in a graph is equal to the number of edges 149

incident to this vertex. For a directed graph, the indegree of a vertex is the number of 150

head ends adjacent to this vertex (edges directed at the vertex) and the outdegree of 151

vertex is the number of tail ends adjacent to this vertex (edges directed from the 152

vertex). The degree of a node in a directed graph is thus the sum of this node’s indegree 153

and outdegree. A directed acyclic graph (DAG) is a directed graph with no cycles (the 154

graph contains no set of vertices p1, p2, ..., pn such that there exists a directed path from 155

p1 to p2 to ... to pn and from pn to p1). The transitive reduction of a directed acyclic 156

graph is the subgraph of the DAG with the least number of edges such that the 157

reachability relation is maintained (there exists a path from vertex p to vertex q in the 158

transitive reduction if and only if there exists a path from p to q in the DAG). 159

Partially Ordered Sets 160

The more mathematically inclined readers may wish to interpret the transitive 161

reduction as a method to represent directed acyclic graphs as partially ordered sets. A 162

partially ordered set (poset) is a set P with an order relation ≤ that is reflexive (x ≤ x), 163

anti-symmetric (x ≤ y and y ≤ x =⇒ x = y), and transitive 164

(x ≤ y and y ≤ z =⇒ x ≤ z) for all x, y, z ∈ P . This order relation is defined for any 165

x, y ∈ P such that x and y are comparable (not all elements of P need to be 166

December 14, 2018 7/27

comparable). Although we call our method a directed graph approach, it is not difficult 167

to see that it is a poset approach as the transitive reduction converts the directed graph 168

to a poset with the set being the subclusters, the order relation being the size of the two 169

subclusters, and two subclusters defined as comparable based on whether or not the 170

Simpson’s similarity (Equation 4) between the two subclusters is greater than or equal 171

to a positive value ssiThreshold ∈ [0, 1]. Thus, for given subclusters Si, Sj we say 172

Si ≤ Sj if SSI(i, j) ≥ ssiThreshold and |Si| ≤ |Sj |. 173

Results 174

DIHNOSIR successfully clustered two data sets, which be label as flip data and 175

antibody data. These data sets as well as the necessary scripts to apply DIHNOSIR to 176

them can be found at https://github.com/amirshane/dihnosir. This repository contains 177

the generalized source code for DIHNOSIR as well as two specific repositories for each 178

of the two data sets. 179

Flip Data 180

DIHNOSIR successfully clustered a data set consisting of 714 points, which represent 181

the structural conformations of flips between corresponding two-element amino acid 182

sequences between two proteins, using both Strong and Weak DIHNOSIR. Two distance 183

metrics, d(x, y) and d∞(x, y) were used. For specifics on the distance metrics as well as 184

other parameters used see the Methods section. 185

Using the d(x, y) distance metric, Strong DIHNOSIR returned the pruned clustering 186

shown in Figure 1, which consists of a noise cluster of size 173 along with eight clusters 187

of size 289, 79, 65, 46, 36, 13, 7, and 6 (from left to right). The clusters are labeled 188

AA→ BL, AL→ BA, AB → BE, EA→ LL, AA→ BB, EE → LB, EB → LE, and 189

EL→ LA to represent the structural conformation they correspond to. The arrow in 190

the notation represents the flip (i.e. AA→ BL indicates a flip from A to B in the first 191

residue and A to L in the second residue). Using the d∞(x, y) distance metric, Strong 192

DIHNOSIR returned a pruned clustering that consists of a noise cluster of size 188 193

along with eight clusters of size 281, 70, 69, 46, 38, 13, 3, and 6 (from left to right). The 194

clusters are labeled AA→ BL, AL→ BA, AB → BE, EA→ LL, AA→ BB, 195

December 14, 2018 8/27

EE → LB, EB → LE, and EL→ LA (see above). Using the d(x, y) distance metric, 196

Weak DIHNOSIR returned the pruned clustering shown in Figure 2, which consists of a 197

noise cluster of size 181 along with seven clusters of size 338, 51, 49, 46, 30, 12, and 7 198

(from left to right). The clusters are labeled AA→ BL, AL→ BA, AB → BE, 199

EA→ LL, AA→ BB, EE → LB, and EB → LE to represent the structural 200

conformation they correspond to. Using the d∞(x, y) metric, Weak DIHNOSIR 201

returned a pruned clustering that consists of a noise cluster of size 197 along with seven 202

clusters of size 339, 49, 34, 46, 30, 13, and 6 (from left to right). The clusters are 203

labeled AA→ BL, AL→ BA, AB → BE, EA→ LL, AA→ BB, and EL→ LA (see 204

above). For a comparison of the different results see Table 1. Regarding the graphs, 205

each cell in the grid is a 2-D plot with domain and range equal to [−180, 180]. The 206

corresponding conformations and residues are shown for each cell as well. Note: In the 207

clustering it may seem that some clusters are disconnected and appear in different 208

quadrants. It is important to realize that this data wraps around itself. This is difficult 209

to visualize but an initial approach should be to imagine a piece of paper being folded 210

horizontally and vertically at the same time. 211

Fig 1. Clustering of Flip Data Using Strong DIHNOSIR with d(x, y) Distance Metric

December 14, 2018 9/27

Fig 2. Clustering of Flip Data Using Weak DIHNOSIR with d(x, y) Distance Metric

Size Noise AABL ALBA ABBE EALL AABB EELB EBLE ELLA

Strong + d(x, y) 173 289 79 65 46 36 13 7 6
Strong + d∞(x, y) 188 281 70 69 46 38 13 3 6
Weak + d(x, y) 181 338 51 49 46 30 12 7 0
Weak + d∞(x, y) 197 339 49 34 46 30 13 0 6

Table 1. Sizes of Clusters Returned by Running DIHNOSIR on Flip Data

212

We analyzed the distribution of amino acid sequences that formed the clusters in the 213

flip data by creating WebLogos. For the WebLogos created from the clustering using 214

Strong DIHNOSIR and d(x, y) see Figure 3. For the WebLogos created from the 215

clustering using Weak DIHNOSIR and d(x, y) see Figure 4. Note that the two central 216

amino acids in the four amino acid sequence are flipped. The leftmost and rightmost 217

amino acids are adjacent to the flipped amino acids and are not themselves flipped. 218

December 14, 2018 10/27

Fig 3. WebLogos of Flip Data Using Strong DIHNOSIR with d(x, y) Distance Metric
(y-axis is Probability)

Fig 4. WebLogos of Flip Data Using Weak DIHNOSIR with d(x, y) Distance Metric
(y-axis is Probability)

December 14, 2018 11/27

Antibody Data 219

DIHNOSIR clustered a data set consisting of 1746 points, each of which represents an 220

eleven residue CDR L1 (complementary-determining region) of an antibody, using both 221

Strong and Weak DIHNOSIR. Two distance metrics, d(x, y) and d∞(x, y), were used. 222

For specifics on the distance metrics as well as other parameters used see the Methods 223

section. 224

The pruned clustering using Strong DIHNOSIR and the d(x, y) metric consists of a 225

noise cluster of size 165 along with seven clusters of size 982, 374, 100, 53, 28, 21, 23 226

(from left to right). The clusters are labeled S1, S2, ..., S7, where S1 = BBABBAEABBB 227

and BBABBAEAABB (merged), S2 = BBABBALLBBB, S3 = BBBLAAABBBB, S4 = 228

BBAAAAABBBB, S5 = BBABBBAABBB, S6 = BBABBBBLBBB and 229

BBABBBBLABB (merged), and S7 = EBBBABBBBBB to represent the structural 230

conformation they correspond to. The pruned clustering of the antibody data using 231

Strong DIHNOSIR and the d∞(x, y) metric is shown in Figure 5 and consists of a noise 232

cluster of size 151 along with seven clusters of size 998. 375, 100, 53, 28, 23, 18 (from 233

left to right). The clusters are labeled S1, S2, ..., S7 (see above). Pruning was not 234

needed for the results outputted by Weak DIHNOSIR. The clustering of the antibody 235

data using Weak DIHNOSIR and d(x, y) as a distance metric consists of a noise cluster 236

as well as 5 clusters. The noise cluster consisted of 162 points and the five clusters 237

consisted of 1045, 377, 100, 49, and 13 points. The clusters are labeled S1, S2, ..., S5, 238

where S1 = BBABBBEABBB and BBABBAEAABB (merged), S2 = BBABBALLBBB, 239

S3 = BBBLAAABBBB, S4 = BBAAAAABBBB, and S5 = EBBBABBBBBB, to 240

represent the structural conformation they correspond to. The clustering of the 241

antibody data using Weak DIHNOSIR and d∞(x, y) as a distance metric, shown in 242

Figure 6, consisted of a noise cluster as well as five clusters. The noise cluster consisted 243

of 112 points and the 5 clusters consisted of 1063, 400, 100, 53, and 18 points. The 244

clusters are labeled S1, S2, ..., S5 (see above). For a comparison of the different results 245

see Table 2 (S7 in the table represents the EBBBABBBBBB conformation). 246

December 14, 2018 12/27

Fig 5. Clustering of Antibody Data Using Strong DIHNOSIR with d∞(x, y) Distance
Metric

Fig 6. Clustering of Antibody Data Using Weak DIHNOSIR with d∞(x, y) Distance
Metric

December 14, 2018 13/27

Size Noise S1 S2 S3 S4 S5 S6 S7

Strong + d(x, y) 134 1010 375 100 53 28 20 26
Strong + d∞(x, y) 125 1016 379 100 57 28 23 18

Weak + d(x, y) 162 1045 377 100 49 0 0 13
Weak + d∞(x, y) 112 1063 400 100 53 0 0 18

Table 2. Sizes of Clusters Returned by Running DIHNOSIR on Antibody Data

247

Discussion 248

We have designed the novel clustering algorithm DIHNOSIR for the clustering of 249

protein dihedral angle data as well as any other data with a distance metric. While 250

other clustering algorithms such as DBSCAN may be able to cluster these data sets, the 251

results can be highly sensitive to the input parameters. Additionally, multiple iterations 252

of these algorithms may be needed to be set up manually and individually analyzed and 253

pieced together to produce a valuable result. DIHNOSIR effectively automates this 254

process with the DBSCAN algorithm and will thus be incredibly useful in analyzing 255

data, particularly protein structural data. Strong DIHNOSIR’s efficacy given a properly 256

defined cluster constraint function that removes merged clusters is shown by the high 257

quality clusterings of the flip and antibody data. We also show that Weak DIHNOSIR 258

produces a comparable result to Strong DIHNOSIR despite the fact that it does not 259

require a cluster constraint function. The source code has been made available, along 260

with the flip and antibody data and various scripts needed to format the data for use 261

with DIHNOSIR, effectively creating examples of its usage. 262

From a data set of 714 flips identified in ? proteins at a resolution of 1.6Å, 263

DIHNOSIR identified eight flip types, the exact number that was expected. The eight 264

flip types are AA→ BL, AL→ BA, AB → BE, EA→ LL, AA→ BB, EE → LB, 265

EB → LE, and EL→ LA. In the first position, A can go to B and E can go to L by 266

flipping ψ by 180 degrees. In the second position, (A,B,L,E) can flip to (L,E,A,B) 267

(i.e. A↔ L and B ↔ E flips) by flipping φ by 180 degrees. We also define AL→ BA 268

to be equivalent to BA→ AL (and similarly for the other flip types). We thus have 269

4 ∗ 4/2 = 8 flips. 270

December 14, 2018 14/27

Methods 271

Computational Methods 272

DIHNOSIR was coded using the Python programming language. The R programming 273

language was also used to help visualize the data. The clustering algorithms and 274

metrics used within DIHNOSIR are imported from scikit-learn. [17] The graph-theoretic 275

methods are imported from NetworkX. [5] 276

Algorithms 277

Pseudocode Notation 278

In the following sections we explain the algorithms used in DIHNOSIR. These 279

algorithms are presented in pseudocode. We use standard pseudocode conventions, 280

however a few of the lines of pseudocode use syntax similar to the Python programming 281

language. The size method takes a data structure such as a list or an array and returns 282

the number of elements in it. With list and array data types we use the syntax for 283

Python list/array slicing. For example, for a list myList the object myList[n] would 284

represent the (n+ 1)th element in the list. The min and max methods take a data 285

structure and return the minimum and maximum elements of said data structure, 286

respectively. 287

Subcluster Determination 288

The first step is to determine the subclusters. This is done by running multiple 289

instances of DBSCAN on the data set over a 2-D grid of ε, minPts parameters and 290

creating a new data set composed of the returned subclusters that satisfy a user-defined 291

constraint. The user must provide two general parameters, minPtsmin and n, as well as 292

a more complicated user-defined constraint. The value for minPtsmin is the smallest 293

value of minPts to be considered. We recommend that minPtsmin be greater than 2. 294

The default for minPtsmin is thus set at 3. This represents the minimum number of 295

points the user wants in a cluster. We set minPtsmax, the absolute maximum value of 296

minPts to be considered, equal to the number of samples in the data. We set εmin and 297

εmax equal to the minimum and maximum distances in the data, respectively. This 298

December 14, 2018 15/27

allows a fully comprehensive consideration of all distances in the data. The value n is 299

used to determine the increment for ε in the grid: 300

∆ε =
εmax − εmin

n
. (3)

Within our grid we consider the set of ε values {εmin + ∆ε, εmin + 2∆ε, ..., εmax}. We 301

recommend that the value for n be approximately 100 or less for initial iterations. The 302

default value for n is thus set at 100. Increasing n will generally increase the quality of 303

the clustering but the improvements will eventually stagnate and the cost in 304

computational complexity is linearly proportional to the value of n. DIHNOSIR runs 305

DBSCAN over a subset of the (minPtsmax −minPtsmin + 1)× n grid: 306



(εmin + ∆ε,minPtsmin) . . . (εmax,minPtsmin)

(εmin + ∆ε,minPtsmin + 1) . . . (εmax,minPtsmin + 1)

...
. . .

...

(εmin + ∆ε,minPtsmax) . . . (εmax,minPtsmax)


Starting at the first row of this grid we run DBSCAN from left to right and add the 307

returned subclusters to a new data set if they satisfy the user-defined constraint. We 308

initialize a variable breakCount to 0. If DBSCAN returns one cluster for a combination 309

of ε and minPts we break out of the row in the grid that we are in. If ε = εmin + ∆ε as 310

well we add one to breakCount. Otherwise we set breakCount to 0. If breakCount 311

reaches a value of 5 we multiply the minPts increment ∆minPts (initially set to 1) by 312

2. This allows us to iterate more quickly through the grid and not add more 313

computational expense by considering clusterings that are likely to only return a single 314

cluster. At the end of this computation we use the method unique to remove any 315

repeated subclusters. See Algorithm 1 for pseudocode. Note: The use of breakCount is 316

not highlighted in the pseudocode for sake of brevity. 317

Removing Merged Clusters 318

In order to use Strong DIHNOSIR, the user must provide a Boolean constraint function 319

that prevents the merging of clusters in the data. This is why Strong DIHNOSIR is 320

named as such, since it requires a strong understanding of the data in order to define 321

December 14, 2018 16/27

Algorithm 1: Subcluster Determination

createSubclusters(X, n, minPtsmin, silhouetteThreshold) Data: X, a square
distance matrix; n, number of iterations; minPtsmin, minimum cluster
size; silhouetteThreshold, minimum Silhouette Score

Result: S = {S1, S2, ..., Sm}, a set of subclusters
S ←− ∅
εmin ←− min(X)
εmax ←− max(X)

∆ε←− (εmax−εmin)
n

minPts←− minPtsmin
∆minPts←− 1
while (minPts ≤ size(X)) do

ε←− εmin + ∆ε
while (ε ≤ εmax) do

Si ←− DBSCAN(X, ε,minPts)
for Sij in Si do

if silhouetteScore(Sij) ≥ silhouetteThreshold then
add Sij to S

ε←− ε+ ∆ε

minPts←− minPts+ ∆minPts

S = unique(S)
return S

such a function. This function is highly specific to the data being clustered and it is 322

needed to ensure that a subcluster returned by DBSCAN is a subset of only a single 323

true cluster in the data. If there is no data-specific function then the Silhouette Score 324

can be used, however Silhouette Score works well primarily with the Euclidean, 325

Manhattan, and Minkowski metrics. With Silhouette Score we suggest that the mean of 326

the Silhouette Sample Scores in a subcluster returned by DBSCAN are relatively high 327

and at least greater than 0.75. This constraint will be regarded as a method that takes 328

a subcluster as an input and returns a Boolean value: clusterConstraint(subcluster). 329

See Algorithm 2 for pseudocode. 330

Algorithm 2: Strong Unmerge

strongUnmerge(S)
Data: S = {S1, S2, ..., Sm}, a set of subclusters
Result: K ⊆ S
K ←− ∅
for Si in S do

if clusterConstraint(Si) then
add Si to K

return K

December 14, 2018 17/27

Weak DIHNOSIR does not require a cluster constraint function. Instead, Weak 331

DIHNOSIR uses a directed graph approach on the subclusters. Two variables denoted 332

silhouetteThreshold and ssiThreshold are required. The default value for 333

silhouetteThreshold is set to 0.75. Subclusters with Silhouette Score lower than this 334

threshold are removed and the algorithm proceeds by creating a directed graph with the 335

remaining subclusters as vertices and edges from Si to Sj if SSI(i, j) ≥ ssiThreshold 336

where 337

SSI(i, j) =
|Si ∩ Sj |

min(|Si|, |Sj |)
∈ [0, 1]. (4)

The default value for ssiThreshold is 1, which is equivalent to the relation Si ⊆ Sj . 338

Next, we take the transitive reduction (done by the transitiveReduction method in the 339

pseudocode) of this graph and define a fundamentally merged cluster as a vertex in the 340

transitive reduction with an indegree of at least 2. Then a merged cluster is either a 341

fundamentally merged cluster or a superset of a fundamentally merged cluster. See 342

Algorithm 3 for pseudocode. 343

Cluster Formation 344

Once we have the appropriate subclusters K = {S1, S2, ..., Sk} we create a graph using 345

Simpson’s similarity index. [6] We first create a k x k matrix denoted MS to store the 346

similarity between pairs subclusters. We iterate over all unique combinations (i, j) 347

where 0 ≤ i < j ≤ n− 1 and we set MK [i][j] and MK [j][i] equal to SSI(i, j). See 348

Algorithm 4 for pseudocode. 349

We then create an undirected graph with edges formed between pairs of subclusters 350

that have at least 0.1 similarity as measured by Simpson’s similarity index. 351

G = (V,E); V = {S1, S2, ..., Sk}; E = {{Si, Sj} : SSI(i, j) ≥ ssiThreshold}. (5)

Note that we use the positive threshold value of ssiThreshold to avoid trivial 352

intersections. See Algorithm 5 for pseudocode. 353

December 14, 2018 18/27

Algorithm 3: Weak Unmerge

weakUnmerge(S)
Data: S = {S1, S2, ..., Sm},a set of subclusters; ssiThreshold, minimum SSI

score
Result: K ⊆ S
K, Q, R, E ←− ∅, ∅, ∅, ∅
for i : (0 ≤ i < m) do

for j : (0 ≤ j < m) do
if SSI(i, j) ≥ ssiThreshold then

if |Si| ≤ |Sj | then
add {i, j} to E

if |Si| ≥ |Sj | then
add {j, i} to E

G←− transitiveReduction(directed(S,E))
for Si in S do

if indegree(Si) < 2 then
add Si to Q

else
add Si to R

for Si in Q do
for Sj in R do

if |Qi| ≥ |Rj | then
if SSI(i, j) ≥ ssiThreshold then

break

else
continue

add Si to K

return K

Algorithm 4: Similarity Matrix Creation

createSimMatrix(K)
Data: K = {S1, S2, ..., Sk}, a set of subclusters
Result: MK ∈ Rk×k, a square matrix of SSI values
k ←− size(K)

MK ←− 0k×k

for Si in S do
for Sj in S do

MK [i][j]←− SSI(i, j)

return MK

Next we find the set of connected components of G: 354

GC = {G1, G2, ..., Gt} = {(V1, E1), (V2, E2), ..., (Vt, Et)}. (6)

December 14, 2018 19/27

Algorithm 5: Graph Creation

createGraphs(MK , ssiThreshold) Data: MK ∈ Rk×k, a square matrix of SSI
values; ssiThreshold, minimum SSI score

Result: GC = {G1
C , ..., G

t
C} = {(V1, E1), (V2, E2), ..., (Vt, Et)}, a set of

connected components
m←− size(MK)
V ←− {1, 2, ..., k}
E ←− ∅
for i : (0 ≤ i < k) do

for j : (0 ≤ j < k) do
if (MK [i][j] ≥ ssiThreshold) then

add {min(i, j),max(i, j)} to E

G←− undirected(V,E)
GC ←− connectedComponents(G)
return GC

The set of clusters is thus: 355

C = {C1, C2, ..., Ct} (7)

where 356

Ci =
⋃

Sj∈Vi

Sj . (8)

See Algorithm 6 for pseudocode. 357

Algorithm 6: Cluster Formation

createClusters(GC) Data: GC = {G1
C , ..., G

t
C} = {(V1, E1), (V2, E2), ..., (Vt, Et)},

a set of connected components
Result: C, a set of clusters
C ←− ∅
for GiC in GC do

if (size(Vi) > 2) then
Ci ←−

⋃
Sj∈Vi

Sj

add Ci to C

return C

December 14, 2018 20/27

DIHNOSIR 358

Strong DIHNOSIR combines the five aforementioned algorithms by first creating the 359

data set of subclusters, removing merged clusters using a user-defined cluster constraint 360

function, creating a similarity matrix based on this set of subclusters, creating an 361

undirected graph using this matrix, and finally creating the clusters in the data. See 362

Algorithm 7 for pseudocode. 363

Algorithm 7: Strong DIHNOSIR

strongDIHNOSIR(X, n = 100, minPtsmin = 3, silhouetteThreshold = 0.75,
ssiThreshold = 1) Data: X, a square distance matrix; n, number of
partitions; minPtsmin, minimum cluster size; silhouetteThreshold,
minimum Silhouette Score; ssiThreshold, minimum SSI score

Result: C, a set of clusters
S ←− createSubclusters(X,n.minPtsmin, silhouetteThreshold)
K ←− strongUnmerge(S)
MK ←− createSimMatrix(K)
GC ←− createGraphs(MK , ssiThreshold)
C ←− createClusters(GC)
return C

Weak DIHNOSIR combines the five aforementioned algorithms by first creating the 364

data set of subclusters, removing merged clusters using the directed graph approach, 365

creating a similarity matrix based on this set of subclusters, creating an undirected 366

graph using this matrix, and finally creating the clusters in the data. See Algorithm 8 367

for pseudocode. 368

Algorithm 8: Weak DIHNOSIR

weakDIHNOSIR(X, n = 100, minPtsmin = 3, silhouetteThreshold = 0.75,
ssiThreshold = 1)
Data: X, a square distance matrix; n, number of partitions; minPtsmin,

minimum cluster size; silhouetteThreshold, minimum Silhouette Score;
ssiThreshold, minimum SSI score

Result: C, a set of clusters
S ←− createSubclusters(X,n,minPtsmin, silhouetteThreshold)
K ←− weakUnmerge(S, ssiThreshold)
MK ←− createSimMatrix(K)
GC ←− createGraphs(MK , ssiThreshold)
C ←− createClusters(GC)
return C

December 14, 2018 21/27

Pruning 369

Pruning is a common practice in cluster analysis. [2, 11, 25] DIHNOSIR returns clusters 370

of varying size, some of which are relatively small. The user has two options. The first 371

is to simply throw these smaller clusters into the noise cluster. The second is to use the 372

larger clusters as well as the noise cluster as a ground truth for the clustering and use a 373

classification algorithm [10] to redistribute the points within the smaller clusters. 374

Flip Data 375

For all iterations we used n = 250. For the iterations of Weak DIHNOSIR we used 376

silhouetteThreshold = 0.6. For the iteration of Weak DIHNOSIR using the d(x, y) 377

distance metric, we used minPtsmin = 4. All other parameters were set to the default 378

values. 379

Each datum is represented as a combination of four ordered pairs of φ and ψ 380

measures 381

x = ((φ1, ψ1), (φ2, ψ2), (φ3, ψ3), (φ4, ψ4)). (9)

Let (φ1x , ψ1x) represent (φ1, ψ1) for the datum x in a cluster. Define (φix , ψix) similarly. 382

We used two distance metrics. The first metric used is defined for a pair of points x, y as 383

d(x, y) =
1

2

3∑
i=2

((1− cos(φix − φiy)) + (1− cos(ψix − ψiy))). (10)

The second metric is an L∞ norm and is defined for a pair of points x, y as 384

d∞(x, y) = 2(max({max(1− cos(φix − φiy), 1− cos(ψix − ψiy)) : ∀i ∈ [2, 3]})). (11)

The cluster constraint function utilizes a modified angular L∞ norm to ensure that no 385

two datums within a subcluster have corresponding dihedral measures that differ by 386

more than 150 degrees. Given a subcluster Si we initially define our norm as 387

K∞(Si) = max({max(|φjx − φjy |, |ψjx − ψjy |) : ∀j ∈ {2, 3}; ∀x, y ∈ Si}). (12)

December 14, 2018 22/27

However, when dealing with Ramachandran plots we must realize that the difference 388

between two angles can only lie between 0 and 180 degrees as the data wraps around 389

itself. Any difference d that is greater than 180 degrees must be rotated by 360 degrees 390

by using 360− d as the difference. Thus our norm is equal to 391

D∞(Si) = min(K∞(Si), 360−K∞(Si)). (13)

Our cluster constraint function is thus defined as 392

clusterConstraint(Si) =


True if D∞(Si) ≤ 150

False else

. (14)

Antibody Data 393

For the iterations of Weak DIHNOSIR we used silhoutteThreshold = 0.7825. All other 394

parameters were set to the default values. 395

Each datum is an eleven residue element represented as a combination of eleven 396

ordered pairs of φ and ψ measures 397

x = ((φ1, ψ1), (φ2, ψ2), ..., (φ11, ψ11)). (15)

The antibody data was clustered twice using two distance metrics. The first metric is 398

nearly identical to that seen in Equation 10 except it is modified for the 11 residue 399

elements. It is defined for a pair of points x, y as 400

d(x, y) =
1

11

11∑
i=1

((1− cos(φix − φiy)) + (1− cos(ψix − ψiy))). (16)

The second metric is also similar to Equation 11 and is defined for a pair of points x, y 401

as 402

d∞(x, y) = 2(max({max(1− cos(φix − φiy), 1− cos(ψix − ψiy)) : ∀i ∈ [1, 11]})). (17)

The cluster constraint function used is nearly identical to that seen in Equation 14 403

except for a slight redefinition of the norm K∞ seen in Equation 12 for the 11 residue 404

December 14, 2018 23/27

elements: 405

K∞(Si) = max({max(|φjx − φjy |, |ψjx − ψjy |) : ∀j ∈ [1, 11] ∀x, y ∈ Si}). (18)

The cluster constraint function is thus defined as 406

clusterConstraint(Si) =


True if D∞(Si) ≤ 150

False else

. (19)

References

1. Ali T, Asghar S, Sajid NA. Critical analysis of DBSCAN variations. 2010

International Conference on Information and Emerging Technologies. 2010.

doi:10.1109/ICIET.2010.5625720

2. Aroche-Villarruel AA, Mart́ınez-Trinidad JF, Carrasco-Ochoa JA, Pérez-Suárez

A. A Different Approach for Pruning Micro-clusters in Data Stream Clustering.

Pattern Recognition. MCPR 2015. Lecture Notes in Computer Science, vol 9116.

Springer, Cham. 2015. doi: 10.1007/978-3-319-19264-2 4

3. Hennig C, Liao TF. How to find an appropriate clustering for mixed type

variables with application to socioeconomic stratification (with discussion).

Journal of the Royal Statistical Science, Series C (Applied Statistics) 62 (2013)

309–369. doi: 10.1111/j.1467-9876.2012.01066.x

4. Dockhorn A, Braune C, Kruse R. An Alternating Optimization Approach Based

on Hierarchical Adaptations of DBSCAN. 2015 IEEE Symposium Series on

Computational Intelligence. 2015. doi: 10.1109/SSCI.2015.113

5. Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and

Function using NetworkX. Proceedings of the 7th Python in Science conference

(SciPy 2008).:11–5. Available from:

http://conference.scipy.org/proceedings/scipy2008/paper 2/.

December 14, 2018 24/27

6. Ho BK, Brasseur R. The Ramachandran plots of glycine and pre-proline. BMC

Structural Biology. BMC Structural Biology. 2005;5:14.

doi:10.1186/1472-6807-5-14

7. Ho BK, Thomas A, Brasseur R. Revisiting the Ramachandran plot: Hard-sphere

repulsion, electrostatics, and H-bonding in the α-helix. Protein Science.

2009Jan;12(11):2508–22. doi: 10.1110/ps.03235203, PMID: 14573863

8. Bezdek JC, Pal NR. Some new indexes of cluster validity. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on 28 (3) (1998) 301–315.

doi: 10.1109/3477.678624

9. Kormas KA, Meziti A, Mente E, Frentzos A. Dietary differences are reflected on

the gut prokaryotic community structure of wild and commercially reared sea

bream (Sparus aurata). MicrobiologyOpen. 2014;3(5):718–28.

doi:10.1002/mbo3.202

10. Kotsiantis SB. Supervised machine learning: a review of classification techniques.

Informatica 31 (3) (2007) 249-268. Available from:

https://dl.acm.org/citation.cfm?id=1566770.1566773.

11. Kpotufe S, von Luxburg U. Pruning nearest neighbor cluster trees; 2011.

arXiv:1105.0540 [stat.ML]. Available from: https://arxiv.org/abs/1105.0540.

12. Kriegel HP; Kröger P; Sander J; Zimek A. Density-based clustering. WIREs

Data Mining and Knowledge Discovery 231-240., 2011. doi: 10.1002/widm.30

13. Liu Y, Li Z, Xiong H, Gao X, Wu J. Understanding of Internal Clustering

Validation Measures. 2010 IEEE International Conference on Data Mining. 2010.

doi: 10.1109/ICDM.2010.35

14. Maccallum PH, Poet R, Milner-White EJ. Coulombic interactions between

partially charged main-chain atoms not hydrogen-bonded to each other influence

the conformations of α-helices and antiparallel β-sheet. A new method for

analysing the forces between hydrogen bonding groups in proteins includes all the

Coulombic interactions. Journal of Molecular Biology. 1995;248(2):361–73. doi:

December 14, 2018 25/27

Coulombic interactions between partially charged main-chain atoms not

hydrogen-bonded, PMID: 7739046

15. Halkidi M, Batistakis Y, Vazirgianni M. On clustering validation techniques.

Journal of Intelligent Information Systems 17 (2-3) (2001) 107–145. doi:

10.1023/A:1012801612483

16. Milner-White EJ. Situations of gamma-turns in proteins. Journal of Molecular

Biology. 1990;216(2):385–97. doi: 10.1016/S0022-2836(05)80329-8, PMID:

2254936

17. Pedregosa et al. Scikit-learn: Machine Learning in Python. JMLR 12, pp.

2825-2830, 2011. Available from: https://dl.acm.org/citation.cfm?id=2078195.

18. Ramachandran G, Sasisekharan V. Conformation of Polypeptides and Proteins.

Advances in Protein Chemistry Volume 23. 1968;:283–437. doi:

10.1016/S0065-3233(08)60402-7, PMID: 4882249

19. de Amorim RC, Mirkin B. Minkowski metric, feature weighting and anomalous

cluster initializing in k-means clustering. Pattern Recognition 45 1061-1075.,

2012. doi: 10.1016/j.patcog.2011.08.012

20. Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis. Journal of Computational and Applied Mathematics.

1987;20:53–65. doi: 10.1016/0377-0427(87)90125-7

21. Sander J, Ester M, Kriegel HP. et al. Density-Based Clustering in Spatial

Databases: The Algorithm GDBSCAN and Its Applications. Data Mining and

Knowledge Discovery (1998) 2: 169. doi: 10.1023/A:100974521

22. Strehl A, Joydeep G. Cluster ensembles – a knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research 3: 583–617;

2002. doi: 10.1162/153244303321897735

23. Voet D, Voet JG. Biochemistry. Hoboken, NJ: Wiley; 2010.

24. Wilson RJ. Introduction to graph theory. Harlow: Prentice Hall; 2010.

December 14, 2018 26/27

25. Zhang J-S, Leung Y-W. Robust clustering by pruning outliers. IEEE

Transactions on Systems, Man and Cybernetics, Part B (Cybernetics).

2003;33(6):983–99. doi: 10.1109/TSMCB.2003.816993

December 14, 2018 27/27

